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Abstract

Markov random fields (MRFs) have been becoming the de facto standard probabilistic model for
low-level vision tasks such as stereo vision and segmentation. In this approach the problems are
formulated as the minimization of energy functions, which can be stochastically interpreted as a
maximum-a-posteriori (MAP) estimation of MRF models. In principle, the use of more realistic
MRF models is accompanied by more difficult energy optimization problems. Therefore, the
performance of energy optimization methods has a significant impact on the overall performance
of individual application methods.

In this dissertation we study the use of a discrete optimization method, graph cuts, for the energy
minimization of the following two types of MRFs with appropriate applications: (i) pairwise MRFs
with a continuous and multidimensional solution value space, which are effective for stereo vision;
(ii) higher-order MRFs with a discrete solution value space, which are effective for segmentation.

In the first topic, we present an efficient inference method for pairwise MRFs in application to
stereo matching problems, where a local 3D plane is estimated for each pixel in order to achieve
accurate stereo vision. Despite the huge solution value space, the proposed method efficiently
finds good approximate solutions. We appropriately design the proposed inference scheme so
that it takes advantage of inherent properties of graph cuts and, at the same time, it accounts for
the specifics of the considered stereo problems. Our method is evaluated on a standard stereo
benchmark and achieves first place among more than 150 stereo algorithms.

In the second topic, we propose an efficient inference method for higher-order MRFs in
application to image segmentation problems. We present the proposed method as an extension of
two prior methods, by revealing their close connections. Our method can be used for various kinds
of higher-order terms and achieves about an order of magnitude greater accuracy than the current
state-of-the-art method. We further show that our method can be applied to multiple-labeling
problems. To the best of our knowledge, this is the first work that shows viable solutions to multiple
distribution matching problems. We also show that, in some reasonable settings, our method can
yield good approximate solutions in only a single minimum cut operation, while it usually costs
several minimum cut operations.

Keywords: energy minimization, Markov random field, higher-order energy, continuous stereo
matching, segmentation
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内容梗概

マルコフ確率場は，ステレオマッチングやセグメンテーションなどの低レベルのビジョン問題

を扱う際の標準的な確率モデルになりつつある．このアプローチでは，問題がエネルギー関数

最小化の枠組みで定式化され，これはマルコフ確率場上での最大事後確率推定（MAP推定）
として解釈される．このとき基本的に，より現実に即したモデルを用いるほど伴うエネルギー

最適化問題は複雑になる．したがって，エネルギー最適化手法の性能は，それを用いる応用手

法の最終的な性能を決定づける大きな要素になる．

本研究は，グラフカットと呼ばれる離散最適化手法を用いたエネルギー最適化手法につい

て論じる．なかでも本研究で取り扱うのは，以下に述べる 2種類のマルコフ確率場モデルにつ
いてであり，各モデルに対して適切な応用を設定して手法を提案する．(1)連続値多次元の 1
階マルコフ確率場モデルに基づいたステレオマッチング問題．(2)離散値多値の高階マルコフ
確率場モデルに基づいた画像セグメンテーション問題．

最初の問題設定では，物体表面を近似する 3次元平面を，各画素に対して密に推定するス
テレオモデルを扱う．3次元平面を推定することで高精度なステレオマッチングが実現できる
が，代わりに解の探索範囲が広大になる．提案する最適化手法は，このような場合でも効率的

に良い近似解を求めることができる．提案手法は，グラフカット固有の性質を活かしつつ，同

時にステレオ特有の性質に即するように適切に設計されたもので，150以上のステレオ手法が
登録された標準的ベンチマークにおいて 1位の性能を達成した．

2番目の問題設定では，画像セグメンテーションで用いられる色分布マッチングなどの様々
な種類の高階関数を，効率的かつ汎用的に最適化する手法を提案する．ここではまず，2つの
先行研究の密接な関係が示され，提案手法はそれら 2つの手法の一般化手法として提示され
る．提案手法は，最新の手法と比べて精度がおよそ 1桁上回った．さらに提案手法を応用して，
多値ラベリング問題に適用できることを示した．これは我々の知る限り，色分布マッチング手

法を一般多値問題に適用した初めての例である．また，通常は良い解を得るのに何度もグラフ

カットを適用する必要があるが，提案手法を応用すると，ある条件設定において，たった 1回
の適用で良い近似解が得られることを示した．

Keywords: エネルギー最適化，マルコフ確率場，高階エネルギー，連続値ステレオマッチン
グ，セグメンテーション
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1
Introduction

1.1 Markov Random Fields in Computer Vision

In computer vision, Markov random fields (MRFs) [Geman and Geman, 1984] have been becoming
the de facto standard probabilistic models for low-level vision problems such as stereo vision and
segmentation.

In this approach, solution values we seek are formulated as a mapping function fp = f(p) :

P → S that assigns each site p ∈ P some value from the solution value space S . For example, in
stereo vision, f represents a depth map on the image domain and we seek a depth value fp for each
pixel p from the depth value space S. Likewise, in segmentation, f represents a segmentation
labeling of the image domain and wee seek an object label fp for each pixel p from the object
label space S . See Figures 1.1 and 1.2 for the visualization of f in stereo vision and segmentation.

The problems using MRFs are then formulated as the minimization of the following energy
function:

E(f) =
∑
p∈P

φp(fp)︸ ︷︷ ︸
unary terms

+
∑

(p,q)∈N

ψpq(fp, fq)︸ ︷︷ ︸
pairwise terms

+
∑
c∈C

φc(fc1 , fc2 , ..., fcn)︸ ︷︷ ︸
higher-order terms

. (1.1)

The first term is often called data term, because it is usually used for measuring sitewise con-
sistencies between given data and the resulting solution value fp of each site p. Likewise, the
second term is often called smoothness term, because it is mostly used for enforcing smooth-
ness on, e.g., depth maps or segmentation labelings between neighboring pixels p and q. The
third term describes simultaneous interactions of multiple sites and it is often used as a more
advanced and realistic model for data terms [Rother et al., 2006; Ayed et al., 2013] and smoothness
terms [Jegelka and Bilmes, 2011; Kohli et al., 2013]. When E(f) has only unary and pairwise
terms, such formulations are called pairwise MRFs. Pairwise MRFs are widely used in many
applications for their well-balanced trade-offs between complexity and description capability.
When E(f) contains higher-order terms, such formulations are called higher-order MRFs. The
use of higher-order MRFs is usually expensive in terms of computational complexity, but it often

1



1.1. MARKOV RANDOM FIELDS IN COMPUTER VISION

brings outstanding performances unattainable with standard pairwise MRF formulations.

Figure 1.1 Illustration of stereo vision, where a solution f is a depth map (right figure).

Figure 1.2 Illustration of image segmentation, where a solution f is an object labeling (right figure).

1.1.1 MAP Estimation and Energy Optimization using Graph Cuts

The minimization of such MRF functions is related to maximum-a-posteriori (MAP) estima-
tion [Geman and Geman, 1984] and is thus called MAP-MRF estiation. The computational
difficulty of MAP-MRF estimation depends on the forms of both the energy function E(f) (e.g.,
pairwise or higher-order) and the solution value space S (e.g., discrete or continuous). In principle,
more realistic models are accompanied by more difficult energy optimization problems. Therefore,
the performances of energy optimization methods determine the maximum performance of e.g.
stereo and segmentation methods.

Of various energy optimization approaches, we in this thesis focus on the study of the energy
optimization methods using graph cuts (GC) [Boykov et al., 2001; Kolmogorov and Zabin, 2004].
A notable ability of GC is that, the energy function E(f) can be exactly and globally minimized in
polynomial times via GC, if the solution value space is binary S = {0, 1} and E(f) is expressed
by a pairwise submodular form of MRFs [Kolmogorov and Zabin, 2004]. Taking advantage of this
ability of GC, we propose two optimization methods using GC, for stereo vision and segmentation

2



1.2. CONTRIBUTIONS

respectively, that can efficiently find approximate yet good solutions for some difficult types of
MRF energy functions.

1.2 Contributions

In this thesis, we study MAP estimation of the following two types of MRFs with appropriate
applications: (i) pairwise MRFs E(f) with a continuous and multidimensional solution value
space S ⊂ Rd, which are effective for achieving accurate stereo vision; (ii) higher-order MRFs
E(f) with a discrete multiple-label space S = {1, 2, ...,K}, which are effective for achieving
accurate segmentation. The contributions of individual works are summarized in the following
sections.

1.2.1 Efficient MAP Estimation of Continuous MRFs for Stereo Vision

We propose an efficient optimization method using GC for pairwise MRF based stereo vision.
Here, a 3D label fp = (ap, bp, cp) representing a local surface plane dp = apx + bpy + cp is
estimated for each pixel p for achieving accurate stereo vision. The contributions of this work are
summarized as follows:

• We propose an inference scheme that efficiently finds good approximate solutions from the
huge solution value space.

• We appropriately design the proposed inference scheme so that it takes advantage of inherent
properties of GC and at the same time accounts for the specifics of the considered stereo
problems.

• The proposed method achieves first place among more than 150 stereo algorithms in a
standard stereo benchmark [Scharstein and Szeliski, 2001].

1.2.2 Efficient MAP Estimation of Higher-Order MRFs for Segmentation

We propose an efficient optimization method using GC for higher-order MRF based segmentation.
The proposed method is applicable to various kinds of useful higher-order terms including color-
distribution matching terms such as Lp-distance, KL divergence, and Bhattacharyya measures.
It can be also used for multiple-labeling problems as well as binary-labeling problems. The
contributions of this work are summarized as follows:

• We point out a theoretically close relationship between two prior methods by Ayed et al.
[2013] and Narasimhan and Bilmes [2005], and propose a generalized method by extending
both approaches.

• The proposed method achieves about an order of magnitude greater accuracy than the current
state-of-the-art method [Ayed et al., 2013].
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1.2. CONTRIBUTIONS

• We applied the proposed method to general multiple-labeling problems. To the best of
our knowledge, this is the first work that shows viable solutions to multiple distribution
matching problems.

• We show that, in some reasonable situations, our method can yield good approximate
solutions to higher-order MRF energies in only a single GC operation, while it usually costs
several minimum cut operations.
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2
Background

2.1 Stochastic Relationship with MAP Estimation

The minimization of E(f) in Equation (1.1) can be interpreted as MAP estimation [Geman and
Geman, 1984]. In MAP estimation, stochastically plausible solutions are estimated by maximizing
a posteriori probability P (f |d) ∝ P (d|f)P (f) with given observed data d. Below we briefly
review the relationship between the minimization of E(f) and MAP estimation using pairwise
MRF formulations. To see this, we use the following equivalence:

f∗ = argmax
f

P (f |d) (2.1)

= argmin
f
− logP (f |d) (2.2)

= argmin
f
− logP (d|f)︸ ︷︷ ︸

likelihood

− logP (f)︸ ︷︷ ︸
prior

. (2.3)

For the posteriori distribution P (d|f)P (f), we use the Gibbs distribution forms with unary and
pairwise potentials φp(fp) and ψpq(fp, fq):

P (d|f)P (f) ∝

∏
p∈P

exp (−φp(fp))

∏
p∈P

∏
q∈N (p)

exp (−ψpq(fp, fq))

 . (2.4)

By using this expression, we can derive the relationship between the posteriori probability P (f |d)
and energy function E(f) as below:

argmax
f

P (f |d) = argmin
f

E(f). (2.5)

In MAP-MRF estimation, the unary terms φp(fp) and pairwise terms ψpq(fp, fq) in E(f) can be
therefore interpreted as likelihood − logP (d|f) and prior − logP (f), respectively.
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2.2. DISCRETE AND CONTINUOUS PAIRWISE MRFS

2.2 Discrete and Continuous Pairwise MRFs

There are two types of pairwise MRF formulations depending on whether the label space S is
discrete or continuous.

When each node is assigned a discrete value, such models are often called discrete MRFs.
There are many powerful discrete optimizers for minimizing such MRF energies. For example,
message passing methods such as belief propagation (BP) [Yedidia et al., 2000; Felzenszwalb and
Huttenlocher, 2004] and tree re-weighted message passing [Kolmogorov, 2006], and combinational
methods such as graph cuts (GC) [Boykov and Kolmogorov, 2004; Kolmogorov and Zabin,
2004] are of common choices. GC differs from message passing methods in that it improves all
nodes simultaneously, and such a global property brings a good convergence ability in GC-based
optimization by helping to avoid trapped at bad local minimas. Comparative studies on various
discrete optimizers for various vision problems can be found in [Kappes et al., 2013; Szeliski et al.,
2008], where GC with the expansion algorithm [Boykov et al., 2001] has shown successful results.
One of the biggest advantages of using discrete optimizers is that they can optimize non-convex
energy functions, which are often useful in vision applications because they are very robust to
outliers. On the other hand, the use of discrete label space is not appropriate in some applications
such as stereo matching and optical flow, because e.g. in stereo the true scene depths reside in the
continuous domains.

A simple solution to such continuous MRF estimation would be to use discrete optimizers
with a finely discretized label space; however, this approach is computationally intractable due
to the huge (infinite) label space. Practical choices are the use of continuous optimizers and
discrete-continuous approaches. Continuous optimizers use various techniques developed in
the context of convex optimization [Boyd and Vandenberghe, 2004; Nocedal and Wright, 2006]
for efficiently and directly estimating continuous MRFs. Although they are very powerful tools
for convex energy functions, the inference can be easily trapped at a bad local minima when
optimizing highly non-convex functions [Lempitsky et al., 2008]. Discrete-continuous approaches
use discrete optimizers for estimating continuous MRFs in efficient manners. For example, fusion
optimization [Lempitsky et al., 2010] estimate continuous MRFs by combining a number of
continuous-valued “weak solutions” using GC. PMBP [Besse et al., 2012] incorporates the spatial
propagation technique of PathMatch [Barnes et al., 2009, 2010] for accelerating BP-based inference
for continuous MRFs.

In Table 2.2, we summarize some basic optimization methods using GC for discrete and
continuous pairwise MRFs. We describe each method in the following sections.
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2.3. INFERENCE METHODS USING GC FOR DISCRETE MRFS

Table 2.1 Summary of GC-based optimization methods. The standard GC can be used for only submodular
energies, whereas QPBO-GC can be used for submodular and non-submodular energies. For discrete
multi-labeling problems the expansion move algorithm is useful. When the label space is huge (e.g., label
space is continuous), the fusion move algorithm is a practical choice.

Methods Type of MRFs for main use Output labels fp
GC (min-cut) binary submodular {0, 1}
GC + expansion moves discrete submodular {0, 1, ..., N − 1}
QPBO-GC binary non-submodular {0, 1, ∅}
QPBO-GC + expansion moves discrete non-submodular {0, 1, ..., N − 1}
QPBO-GC + fusion moves continuous non-submodular {g(0)p , g

(1)
p , ..., g

(N−1)
p }

2.3 Inference Methods using GC for Discrete MRFs

2.3.1 S-T Minimum Cut for Binary MRFs

The essential function of GC is to minimize binary-labeling MRF energies, i.e., E(f) with the
binary label space S = {0, 1}. When all pairwise potentials in E(f) meet the following condition
known as submodularity

ψ(0, 0) + ψ(1, 1) ≤ ψ(1, 0) + ψ(0, 1), (2.6)

the minimization of E(f) can be replaced with a min-cut / max-flow problem in the graph theory,
which can be optimally and exactly solved in a polynomial time [Kolmogorov and Zabin, 2004].
Specifically, the s-t minimum cut is performed on a graph illustrated in Figure 2.1, resulting in a s-t
partition (S, T ) where S ⊆ P and T = P \ S. The globally optimal labeling f∗ = argminE(f)

is then obtained by the following rules:

fp ←

1 if p ∈ S

0 if p ∈ T
. (2.7)

This binary formulation is directly used in foreground-background image segmentation [Boykov
et al., 2001; Rother et al., 2004].

2.3.2 Expansion Moves for Discrete MRFs

Boykov et al. [2001] proposes the expansion move algorithm for efficiently optimizing multi-
labeling MRFs using GC. Algorithm 2.1 shows the overview of the expansion move algorithm.
In this method the multi-labeling problem is reduced to a sequence of binary-labeling problems,
where each node p is assigned either its current label fp or a proposal label α ∈ S . This sequential
process is also illustrated in Figure 2.2. The line 5 of Algorithm 2.1 shows the binary problems,
where the binary-labeling MRF energies are minimized via the s-t minimum cut by applying the
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2.3. INFERENCE METHODS USING GC FOR DISCRETE MRFS

0 1 1

0 0 1

0 0 0

min-cutterminal-node

source-node

Figure 2.1 Illustration of s-t minimum cut for 2D grids. In GC optimization, we make a graph with pixel
nodes and two spatial nodes called source and terminal nodes. We encode the unary costs into the edge
weights between each pixel node and the source/terminal node (blue/orange edges), and the pairwise costs
into the edge weights between neighboring pixel nodes (black edges). The optimal labeling is obtained as
the minimum-cost cut that separates pixel nodes into either source or terminal side.

Algorithm 2.1 Expansion algorithm
1: Define the discrete label space S := {s(0), s(1), ..., s(N−1)}
2: Initialize f by setting fp ← s(0)

3: repeat
4: for all labels α ∈ S do
5: f ← argminE(f ′|f ′p ∈ {fp, α})
6: end for
7: until convergence

following update-rules:

fp ←

α if p ∈ S

fp if p ∈ T
(2.8)

Here, each binary problem is optimally solved by the s-t minimum cut, if only pairwise potentials
ψ meet the following submodularity of expansion moves [Boykov et al., 2001; Kolmogorov and
Rother, 2007]:

ψ(α, α) + ψ(β, γ) ≤ ψ(β, α) + ψ(α, γ). (2.9)

2.3.3 QPBO for Non-Submodular Binary MRFs

So far, we have only discussed the cases where the energy functions and move-energies are
submodular. Actually, we cannot correctly treat non-submodular energy functions with standard GC
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2.3. INFERENCE METHODS USING GC FOR DISCRETE MRFS

(a) initial solution (b) -expansion

(c) -expansion (d) -expansion

(e) -expansion (f) -expansion

(g) -expansion (h) -expansion

Figure 2.2 Illustration of the expansion move algorithm [Boykov et al., 2001]. Starting with (a) an initial
solution, the expansion algorithm successively expands the region of a proposal label as shown in (b) to (h).
In other words, in each expansion operation, each pixel’s solution is allowed to move to the proposal label
or stay at its current label. The images are cited from [Boykov et al., 2007].
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2.4. INFERENCE METHODS FOR CONTINUOUS MRFS

optimization because they are not “graph representable” [Kolmogorov and Zabin, 2004] 1. Recently,
Kolmogorov and Zabih [2001] have introduced quadric pseudo-boolean optimization (QPBO) or
so-called QPBO-GC [Boros et al., 1991; Hammer et al., 1984] into the vision community, which
has become a standard technique for handling non-submodular energies in GC optimization.

QPBO-GC is essentially an optimization technique for binary MRFs. In QPBO-GC, each node
is duplicated as p and its inverse node p̄, and the s-t minimum cut is performed on a special graph
using the duplicated nodes. Its output is given as a partial labeling fp ∈ {0, 1, ∅} by the following
rules:

fp ←


1 if p ∈ S and p̄ ∈ T

0 if p ∈ T and p̄ ∈ S

∅ otherwise

, (2.10)

where the label ∅ means that the nodes are left unlabeld. It is guaranteed that if fp is labeled either
0 or 1, the optimal solution is partially given as f∗p = fp for the labeled nodes p. Furthermore, it is
guaranteed that the optimal solution f∗ is obtained when the energy functions are submodular.

2.4 Inference Methods for Continuous MRFs

2.4.1 Fusion Moves for Continuous MRFs

The introduction of QPBO-GC has brought a powerful GC-based optimization scheme, fusion
moves [Lempitsky et al., 2010], for continuous MRFs. Fusion moves are an operation that com-
bines two solutions f and g to make a better solution, where each node p is assigned either fp
or gp. Here, “better” means that the energy value of the fusion result is not higher than both
E(f) and E(g). We call this operation “binary fusion”. Note that expansion moves [Boykov
et al., 2001] are special cases of fusion moves where g is given spatially constant as gp = α. The
fusion-based optimization therefore proceeds similarly to the expansion move algorithm as shown
in Algorithm 2.2.

Algorithm 2.2 Fusion algorithm
1: Generate a set of solution proposals G := {g(0), g(1), ..., g(N−1)}
2: Initialize f by setting fp ← g

(0)
p

3: repeat
4: for all proposals g ∈ G do
5: f ← argminE(f ′|f ′p ∈ {fp, gp})
6: end for
7: until convergence

In the fusion-based optimization frameworks, a number of plausible solutions {g(0), g(1), ..., g(N−1)}
1When binary-labeling MRF energies are non-submodular, the corresponding s-t graphs contain negative edge

weights, for which the min-cut / max-flow algorithm cannot be applied.
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2.4. INFERENCE METHODS FOR CONTINUOUS MRFS

or so-called proposals are first generated by other external methods. The proposals are then succes-
sively combined as a sequence of binary fusions, where each binary fusion combines the current
solution f and one of proposal solutions g. Since the binary fusions can contain non-submodular
terms, the minimization at the line 5 of Algorithm 2.2 is performed via QPBO-GC by the following
rules:

fp ←


gp if p ∈ S and p̄ ∈ T

fp if p ∈ T and p̄ ∈ S

fp otherwise

. (2.11)

In the third case of the above equation, unlabeled nodes are set to their current labels fp, by doing
which the energy value E(f) is guaranteed not to increase throughout the iterations [Kolmogorov
and Rother, 2007]. The final fusion result f is assigned as fp ∈ {g(0)p , g

(1)
p , ..., g

(N−1)
p } so as to

minimize E(f). Therefore, we can use the fusion technique for optimizing continuous MRFs
by using continuous-valued proposals. The spirit of the fusion approaches here is to use many
“weak” solutions to optimize difficult and complex models.

The fusion algorithm in Algorithm 2.2 is sometimes described as “fusion-based expansion algo-
rithm” or “fusion using the expansion algorithm”. This is because the fusion of multiple proposals
can be regarded as a multi-labeling problem of assigning a “meta-label” ip ∈ {0, 1, .., N − 1} for
each pixel p such that the fusion solution f given by fp = g

(ip)
p minimizes E(f); and in this view,

we can say that Algorithm 2.2 solves the multi-labeling problem using the expansion algorithm
on the meta-labels {0, 1, .., N − 1}. To avoid the confusion, however, we strictly distinguish
expansion moves from fusion moves; we refer to fusion moves as expansion moves only when
proposals {g(i)} are given spatially constant, i.e., g(i)p = α holds for all pixels p ∈ P . This
difference derives a subproblem optimality for expansion moves such that each binary-labeling
problem during the optimization (i.e. the line 5 of Algorithm 2.1) can be optimally solved without
employing expensive QPBO-GC if only the submodularity of Equation (2.9) is satisfied, which in
contrast is not the case for general fusion moves.

Although the fusion algorithm of Algorithm 2.2 is a standard fashion for fusing multiple
proposals, fusion itself can be achieved using other than the sequential fashion of the expansion
algorithm. A possible choice is LogCut [Lempitsky et al., 2007], where the proposals are fused
not sequentially but hierarchically just like a tournament tree. In LogCut the number of graph cuts
required for vising all proposals grows only logarithmically w.r.t. the number of the proposals,
whereas the complexity is linear in the expansion algorithm.

2.4.2 PAERL Algorithm for Multi-Model Fitting

Multi-model fitting [Isack and Boykov, 2012; Delong et al., 2012] is a problem of segmenting data
points with geometric models, e.g. fitting planes to point cloud data, and we consider that it takes
a middle position between discrete and continuous MRF problems; in multi-model fitting, the
label space we must search is continuous and multi-dimensional but the number of actually used
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2.4. INFERENCE METHODS FOR CONTINUOUS MRFS

labels is small. For such problems, the PAERL algorithm [Isack and Boykov, 2012] presented in
Algorithm 2.3 has shown to be useful.

Algorithm 2.3 PEARL algorithm
1: Initialize geometric models randomly S ← {s(0), s(1), ..., s(N−1)}
2: repeat
3: Assign geometric models: f ← argminE(f |S)
4: Update geometric models: S ← argminE(S|f)
5: until convergence

The PAERL algorithm searches the continuous label space by alternating between assigning
and updating geometric models. The assignment of given geometric models is achieved by the
expansion algorithm at line 3 of Algorithm 2.3. Then, at line 4, we update the geometric models
by minimizing the energies with the labeling fixed at f ; e.g. when fitting planes to point clouds,
each plane model s(i) ∈ S can be updated by least squares regression using inlier points that are
assigned s(i).

Because we must visit all labels in the expansion algorithm, this approach is only viable when
the number of geometric models in the scenes is small 2, and it becomes intractable with e.g. dense
stereo matching that estimates per-pixel independent planes. In fact, Olsson and Boykov [2012]
report that estimating dense planes for 10K points takes about three hours using a very similar
optimization approach.

2.4.3 PatchMatch for Nearest-Neighbor Field Estimation

Nearest-neighbor field estimation is a kind of dense correspondence search between two images,
but it considers no spatial smoothness but only matching similarity of patches; thus, it can be
formulated as MRFs with only unary terms measuring patch-similarity.

PatchMatch [Barnes et al., 2009, 2010] is an efficient inference method for nearest-neighbor
field estimation using spatial propagation and randomized search. Its algorithm is summarized in
Algorithm 2.4.
The idea behind spatial propagation is that if a well-matched correspondence is found at a pixel
p, it has a very high chance that the p’s solution gives good estimates for p’s nearby pixels too.
Using this idea, the PatchMatch algorithm first assigns random values to all pixels, and visits the
pixels sequentially in raster-scan order. Then, at each pixel p, (1) it collects current labels assigned
to p’s neighboring pixels, (2) chooses the best label among p’s current label and the neighbors’
labels, (3) refines the chosen label using iterative randomized search and takes it as p’s label. The
search scope in this step (3) is reduced exponentially as shown in line 6 of Algorithm 2.4.

Despite its simpleness, PatchMatch works very successfully even for large or high-dimensional
2In fact, the number of actually used labels in the solutions f is directly reduced using so-called label costs in

multi-model fitting [Delong et al., 2012; Isack and Boykov, 2012].
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2.4. INFERENCE METHODS FOR CONTINUOUS MRFS

Algorithm 2.4 PatchMatch algorithm
1: Initialize f randomly
2: repeat
3: for all pixels p ∈ P in raster-scan order do
4: fp ← argminφp(s) with s ∈ {fp, fq|q ∈ N (p)}
5: for m = 1 to M do
6: r ← fp + random ∈ [0, σ2/2m]
7: fp ← argminφp(s) with s ∈ {fp, r}
8: end for
9: end for

10: until convergence

label spaces. Although PatchMatch only optimizes unary terms, Besse et al. [2012] propose a
unified method of PatchMatch and BP for pairwise MRFs with smoothness regularization terms.
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3
MAP Estimation of Continuous MRFs for

Stereo Vision

3.1 Introduction

3.1.1 Stereo Vision

Stereo vision is a technique for estimating the 3D geometry of static scenes using multiple images
taken from different view points. Although the recent availability of consumer depth cameras
has been gaining attention in computer vision, the image-based modeling approaches still have
advantages because RGB-image cameras are much more low-cost and popular. For example,
Agarwal et al. [2011] build a system that reconstructs the 3D geometries of a whole city using
more than 100K images available on Internet photo-sharing sites. Furthermore, point clouds
obtained by depth sensors are often very sparse due to the limited resolutions of depth cameras.
Wang and Yang [2011] show that such sparse depth points can be refined and up-sampled by using
the stereo vision techniques.

Of various settings of stereo vision, the binocular stereo problems, which assume two input
images taken from horizontally-positioned parallel cameras, make a fundamental building block
in stereo vision. Figure 3.2 depicts the typical settings of binocular stereo vision. Here, a depth
value z at an image coordinate p on the left view image can be triangulated by

z = fB/d (3.1)

if p’s corresponding point p′ = p− (d, 0)T on the right image as well as the camera’s focal length
f and baseline length B are known. Therefore, the objective of binocular stereo vision amounts to
finding the best matching d or so-called disparity for each pixel.

3.1.2 Overview and Subjects of Stereo Vision

Stereo vision consists of several fundamental subjects, each of which is often studied as an
independent topic. As an area overview we introduce representative subjects in stereo vision
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3.1. INTRODUCTION

(a) initial random disparities (b) 1 iteration (c) 2 iterations

(e) 3 iterations (f) 10 iterations (g) post-processing

Figure 3.1 Process of our stereo matching, showing disparity and error maps for Teddy. In our framework,
we start with (a) random disparities that are represented by per-pixel 3D planes. We then alternately
propagate local plane candidates and refine them in an iterative manner. (b)–(f) show the results after
each propagation stage. Unlike previous methods, we use graph cuts for the propagations in an energy
minimization framework. Finally, the resulting disparity map is further refined at (g) post-processing stage
based on left-right consistency check and weighted median filtering.
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3.1. INTRODUCTION
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Figure 3.2 Basic setups of rectified binocular stereo vision. Two parallel cameras with the focal length f
are placed at (0, 0, 0) and (B, 0, 0). A 3D point (x, y, z) is projected onto the left and right image planes at
pixel coordinates p and p′, respectively.

including optimization as our main focus in this paper. Please refer to [Hartley and Zisserman,
2004] for more details of the theory of multiview stereo.

Camera Calibration

Camera calibration is the estimation of extrinsic and intrinsic parameters of cameras. Extrinsic
parameters are a translation T and rotation R of each camera, which denote the coordinate system
transformations from 3D world coordinates to 3D camera coordinates. They can be estimated
from images using structure-from-motion techniques [Hartley and Zisserman, 2004]. Intrinsic
parameters such as focal length f , principal point, and lens distortion define the perspective
projection transformations from 3D camera coordinates to image coordinates.

In binocular stereo vision, identical rotations and intrinsic parameters are assumed between a
pair of cameras. Also, camera calibration is often omitted because as long as the performances
are evaluated by disparity instead of depth, such calibration parameters are not required. In fact,
a well-known online stereo benchmark known as the Middlebury stereo benchmark [Scharstein
and Szeliski, 2001] evaluates accuracies by disparity. In this paper we omit this stage, or assume
pre-calibrated cameras.
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3.1. INTRODUCTION

Rectification

Image rectification is a pre-processing technique for stereo vision. Given a calibrated camera
pair, image rectification [Monasse, 2011] transforms input image pairs so that their non-parallel
camera rotations are set parallel to each other as shown in Figure 3.2. By rectification, stereo
matching problems are simplified because p and its corresponding point p′ in Figure 3.2 have the
same y-coordinate, and we only need to estimate horizontal disparity. We assume a rectified stereo
image pair as input.

Photo-Consistency

Because stereo vision is a problem of finding correspondences between image pairs, the design of
accurate and robust photo-consistency measures is a fundamental factor in stereo vision. Basically,
we evaluate the reliability of matching points by measuring pixel intensity differences; for example,
Birchfield and Tomasi [1998] propose pixel dissimilarity measure that is insensitive to image
sampling. However, intensity-based measures are not robust to illumination changes. Therefore,
gradient-based photo-consistency measures are often used by combining with intensity-based
measures linearly [Klaus et al., 2006] or selectively [Xu et al., 2012].

Cost Aggregation

If photo-consistency is measured using only single pixels, it will be fairly unreliable due to
matching ambiguity and noises. Therefore, matching costs are usually aggregated, i.e., multiple
matching costs for nearby pixels are integrated to calculate each pixel’s matching reliability. In
other words, we use local windows for matching pixels.

There is an implicit assumption in this approach, i.e., all pixels in a local window have the
same disparity with that of the center pixel. This assumption is likely to collapse in two cases:
(1) when pixels in the window lie on a different surface than the center pixel; (2) when the local
region is not front-parallel and highly slanted. These are quite problematic because when we use
larger windows for increasing the matching reliability, the constant-disparity assumption is more
likely to collapse.

The first case is well handled by incorporating adaptive window approaches [Hosni et al., 2012],
where we adaptively assign weights for the pixels in the window based on the color similarity and
spatial distance from the center pixel of the window. The concept is illustrated in Figure 3.3. To
achieve edge-aware adaptive windows, edge-preserving filtering such as bilateral filtering [Tomasi
and Manduchi, 1998; Yoon and Kweon, 2005] and guided image filtering [He et al., 2013; Rhemann
et al., 2011] are used as cost-volume filtering. Therefore, the development of fast and highly
edge-preserving filtering can be an important topic in stereo vision.

For the second case, Bleyer et al. [2011] recently show that, by assigning a local 3D dispar-
ity plane for each pixel, accurate photo-consistencies are measured avoiding the front-parallel
biases. In this approach, however, the label space we must search for each pixel is too huge to be
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(a) window (b) depth

(e) bilateral weights (c) spatial weigts (d) color-based weights

Figure 3.3 Concept of adaptive support windows. (a) The support window may contain pixels that lie on a
different surface than the center (yellow) pixel, just as shown in (b) the depth map. The bilateral adaptive
windows [Yoon and Kweon, 2005] define matching weights shown in (e) by combining (c) spatial weights
and (d) color-based weights. In the context of cost-volume filtering the weights can be regarded as filter
kernels.

tractable with the conventional exhaustive strategies. This problem imposes another difficultly in
optimization, which we mainly focus on in this paper.

Regularization

When photo-consistency measures are ambiguous and noisy, the use of regularization can be very
helpful. The smoothness regularization is usually used in stereo matching, which assumes and
enforces spatially smooth disparity maps. The regularization is formulated as pixel interaction
terms, which have to be optimized in a global manner. The simplest regularizer is picewise-constant
models |dp− dq| that penalize disparity deviations between neighboring pixels. However, because
this model has a front-parallel bias and is not realistic to use, the second-order smoothness
regularization is preferred in practice. Woodford et al. [2009] propose a second-order smoothness
term in a form of |dr − 2dp + dq|; however, as it involves three pixels into interactions, its
optimization is rather complicated. Olsson et al. [2013] propose a second-order smoothness term
based on pixelwise plane formulations, which can be achieved as pairwise interactions. We use
their smoothness term in our proposed method.
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Optimization

If stereo matching formulations contain pairwise or higher interaction terms, those cost functions
must be optimized by a global optimization method such as belief propagation and graph cuts.
Furthermore, if the disparity label space is high-dimensional or continuous, e.g., disparity planes
have a three-dimensional continuous label space, the optimization becomes even difficult because
we cannot exhaustively search the entire label space with discrete optimizers. In this paper, we
focus on the optimization of continuous pixelwise plane models.

Post-Processing and Refinement

The post-processing is used to refine resulting disparity maps by e.g. removing unreliable estimates
by checking the consistency between left and right disparity maps, and applying edge-aware
filtering. This process is often used for handling occlusions as described below.

Occlusions

Occlusions are problems particular to stereo vision. If a pixel in one image is invisible in the other
images, the pixel is occluded and its disparity thus cannot be obtained in principle. In practice, we
can estimate the depth of occluded pixels using the assumption that nearby pixels with similar
colors tend to have a close depth value. Occlusions are handled mainly by two ways: during
post-processing [Rhemann et al., 2011], or optimization [Kolmogorov and Zabih, 2001, 2002;
Wei and Quan, 2005; Woodford et al., 2007].

3.1.3 Motivations and Contributions

Recent years have seen significant progress in accuracy of stereo vision. One of the breakthroughs is
the use of 3D labels [Bleyer et al., 2011; Besse et al., 2012; Lu et al., 2013; Olsson et al., 2013; Heise
et al., 2013]; by estimating a local 3D disparity plane d = apx+ bpy + cp for each pixel, accurate
photo-consistency is measured between matching pixels even with large matching windows. While
stereo with standard 1D discrete disparity labels [Wang and Yang, 2011; Kolmogorov and Zabih,
2002, 2001; Boykov et al., 2001] can be directly solved by discrete optimizers such as graph cuts
(GC) [Kolmogorov and Zabin, 2004; Boykov and Kolmogorov, 2004] and belief propagation
(BP) [Yedidia et al., 2000; Felzenszwalb and Huttenlocher, 2004], such approaches cannot be
directly used for continuous 3D labels due to the huge (infinite) label space (a, b, c) ∈ R3.

Recent successful methods [Bleyer et al., 2011; Besse et al., 2012; Lu et al., 2013] use Patch-
Match [Barnes et al., 2009, 2010] to efficiently infer correct 3D planes using spatial propagation;
each pixel’s candidate plane is, in raster-scan order, refined and then propagated to next pixels.
Further in [Besse et al., 2012], this sequential algorithm is combined with BP yielding an efficient
optimizer PMBP for pairwise Markov random fields (MRFs) [Geman and Geman, 1984]. In terms
of MRF optimization, however, BP is considered a sequential optimizer, which improves each
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node individually keeping others conditioned at the current state. In contrast, GC improves all
nodes simultaneously by accounting for interactions across nodes, and this global property helps
optimization avoid local minima [Szeliski et al., 2008; Woodford et al., 2009]. Nevertheless,
incorporating spatial propagation into GC-based optimization is not straightforward, because
inference using GC proceeds rather all-nodes-simultaneously, not one-by-one-sequentially like
PatchMatch and BP.

In this paper, we introduce a new labeling scheme, locally shared labels, that enables spatial
propagation in fusion-based optimization using GC [Lempitsky et al., 2010]. The locally shared
labels define, for each pixel or region, its compact and local discrete label space that is shared
among neighboring pixels/regions. By using locally shared labels we generate a number of
disparity maps or so-called proposals in the literature [Lempitsky et al., 2010], and fuse and refine
them in an iterative manner (see Figure 3.1). For natural scenes that often exhibit locally planar
structures 1, the joint use of locally shared labels and GC has a useful property; it allows multiple
pixels in a local region to be assigned the same disparity plane by a single min-cut in order to find
smooth solutions and to avoid trapped at a bad local minima.

Advantages

The advantages of our method are fourfold:

• First, our locally shared labels produce submodular moves that guarantee the optimal labeling
at each min-cut (subproblem optimal), which in contrast is not guaranteed in general fusion
moves [Lempitsky et al., 2010].

• Second, this optimality property and spatial propagation allow randomized search, rather
than employ external methods to generate plausible initial proposals as done in previous
fusion approaches [Lempitsky et al., 2010; Woodford et al., 2009; Olsson et al., 2013],
which may limit the possible solutions.

• Third, our method achieves greater accuracy than BP [Besse et al., 2012] thanks to the good
properties of GC and locally shared labels.

• Finally, unlike PMBP [Besse et al., 2012] the computation of both unary and pairwise costs
can be performed in a parallel manner2, which is the most expensive part in practice. With
the proposed approach, accurate stereo matching can be efficiently computed with a GPU
implementation as we will see in the experiment.

1It has been shown in [Heise et al., 2013] that a plane in the 3D world coordinates is still expressed as a plane in the
disparity space on the 2D image domains.

2Although BP is usually GPU-parallelizable, PMBP differs from BP’s standard settings in that it defines label space
uniquely and distinctively for each pixel and propagate it; both make parallelization indeed non-trivial.
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Table 3.1 Summary of MRF stereo methods. There is a trade-off relationship between the reconstruction
quality and computational complexity in the three approaches of discrete, segment-based, and continuous
stereo. Our work focuses on the optimization for the continuous stereo models.

Method types Advantages Disadvantages
discrete stereo can use discrete optimizers quantized depth

segment-based stereo no depth quantization error hard-segment, piecewise planar
continuous stereo smooth surface difficult to estimate

3.2 Related Work

MRF stereo methods can be categorized into three approaches: discrete stereo, segment-based
stereo, and continuous stereo. A summary is given in Table 3.2.

Discrete Stereo

Discrete stereo [Wang and Yang, 2011; Kolmogorov and Zabih, 2002, 2001; Boykov et al., 2001]
formulates stereo matching as a discrete multi-labeling problem, where each pixel is individ-
ually assigned one of pre-defined discrete disparity values. For this problem, many powerful
discrete optimizers, such as BP [Yedidia et al., 2000; Felzenszwalb and Huttenlocher, 2004],
tree re-weighted message passing [Kolmogorov, 2006], and GC [Kolmogorov and Zabin, 2004;
Boykov and Kolmogorov, 2004], can be directly used. Successful results are shown using GC
with expansion moves [Boykov et al., 2001; Szeliski et al., 2008].

Segment-based Stereo

Segment-based stereo [Tao et al., 2001; Hong and Chen, 2004; Klaus et al., 2006; Wang and Zheng,
2008] assigns a 3D disparity plane for each of over-segmented image regions. The candidate
planes are generated by fitting planes to a roughly estimated disparity map, and then the optimal
assignment of the planes is estimated by, e.g., GC with expansion moves [Boykov et al., 2001; Hong
and Chen, 2004] or BP [Felzenszwalb and Huttenlocher, 2004; Klaus et al., 2006]. Although this
approach yields continuous-valued disparities, it strictly limits the reconstruction to a piecewise
planar representation. Also, results are subject to the quality of the segmentation.

Continuous Stereo

The last group, to which our method belongs, is continuous stereo [Woodford et al., 2009; Bleyer
et al., 2011; Besse et al., 2012; Olsson et al., 2013; Lu et al., 2013; Heise et al., 2013], where each
pixel is assigned a distinct continuous disparity value. Some methods [Woodford et al., 2009;
Olsson et al., 2013] use fusion moves [Lempitsky et al., 2010], an operation that combines two
disparity maps to make a better one (binary fusion) by solving a non-submodular binary-labeling
problem using QPBO-GC [Kolmogorov and Rother, 2007; Lempitsky et al., 2010]. In this
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approach, a number of continuous-valued disparity maps (or proposals) are first generated by other
external methods (e.g., segment-based stereo [Woodford et al., 2009]), which are then combined
as a sequence of binary fusions. Our method is also based on fusion moves but generates proposals
using locally shared labels, which enable spatial propagations of local candidate planes and, more
importantly, they make fusion moves submodular, i.e., each binary fusion is optimally solved via
GC (subproblem optimal). Our method only requires randomized initial proposals instead of those
generated by external methods.

A stereo method by Bleyer et al. [Bleyer et al., 2011] proposes accurate photo-consistency
measures using 3D disparity planes that are inferred by PatchMatch [Barnes et al., 2009, 2010].
Heise et al. [Heise et al., 2013] incorporates Huber regularization into [Bleyer et al., 2011] using a
joint framework of PatchMatch and convex optimization. Besse et al. [Besse et al., 2012] point out
a close relationship between PatchMatch and BP and present a unified method called PatchMatch
BP (PMBP) for pairwise continuous MRFs. PMBP is probably the closest approach to ours in
spirit, but we use GC instead of BP for the inference. Therefore, our method is able to take
advantage of better convergence of GC [Szeliski et al., 2008] for achieving greater accuracy. In
addition, our method allows parallel computation of both unary and pairwise costs.

3.3 Proposed Method

This chapter describes the proposed stereo matching method. Given two input images IL and IR,
our purpose is to estimate disparity maps of both images.

3.3.1 Formulation

We use a pairwise MRF formulation by following conventional stereo matching methods [Olsson
et al., 2013; Wang and Yang, 2011; Kolmogorov and Zabih, 2002, 2001; Boykov et al., 2001]. In
the MRF framework, each pixel p ∈ (P ⊂ Z2) is assigned a value in some disparity space S , and
one seeks a disparity map f for every pixel fp = f(p) : P → S that minimizes

E(f) =
∑
p∈P

φp(fp) +
∑
p∈P

∑
q∈N (p)

ψpq(fp, fq). (3.2)

The first term, called the data term or unary term, measures the photo-consistency between
matching pixels. The disparity fp defines a warp from a pixel p in one image to its correspondence
in the other image. The second term is called the smoothness term or pairwise term, which
penalizes discontinuity of disparities of a pixel p and its neighboring pixels q ∈ N (p). We define
these terms as below.
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Data Term

To measure photo-consistencies, we use a data term that has been recently proposed by [Bleyer et al.,
2011]. Here, each pixel p’s disparity dp is over-parameterized by a 3D plane dp = apx+ bpy + cp

to avoid the frontal-parallel bias. Therefore, the objective becomes to seek a disparity plane
fp = (ap, bp, cp)

T ∈ S for every pixel p in the left and right images such that disparity map f
minimizes the energy function E(f) of Equation (3.2). Using this p’s disparity plane fp, a pixel
q = (qx, qy)

T in the left image is warped to a new location in the right image by a warping wfp as

wfp(q) = q − (apqx + bpqy + cp, 0)
T . (3.3)

The data term of p in the left image is therefore defined as

φp(fp) =
∑
q∈Wp

ωpq ρ
(
q, wfp(q)

)
. (3.4)

Here, Wp is a square window centered at p. The weight ωpq implements the adaptive support
window proposed in [Yoon and Kweon, 2005], and is defined as

ωpq = e−‖IL(p)−IL(q)‖1/γ , (3.5)

where γ is a user-defined parameter, and ‖ · ‖1 represents the `1-norm. Unlike the original weight
function, the spatial distance term is removed because it makes only a slight contribution to
improving the results as stated in [Hosni et al., 2012; Bleyer et al., 2011]. Our color-based weights
ωpq are illustrated in Figure 3.3 (d). The function ρ(q, wfp(q)) measures the pixel dissimilarity
between q and its matching point wfp(q) as

ρ(q, wfp(q)) = (1− α) min(‖IL(q)− IR(wfp(q))‖1, τcol)

+α min(‖∇xIL(q)−∇xIR(wfp(q))‖1, τgrad), (3.6)

where∇xI represents the x-component of the gray-value gradient of image I , and α is a factor that
balances the weights of color and gradient terms. The two terms are truncated by τcol and τgrad to
increase the robustness for occluded regions. We use linear interpolation to compute IR(wfp(q)).
When the data term is defined on the right image, we swap IL and IR in Equations (3.5) and (3.6),
and add the disparity value in Equation (3.3).

Smoothness Term

For the smoothness term, we use a curvature-based, second-order smooth regularization term [Ols-
son et al., 2013] defined as

ψpq(fp, fq) = λmax (ωpq, ε) min(ψ̄pq(fp, fq), τdis), (3.7)
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where λ is a user-defined parameter, and ε is a small user-defined value that gives a lower bound to
the weight ωpq for increasing the robustness. The function ψ̄pq(fp, fq) penalizes the discontinuity
between fp and fq in terms of disparity as

ψ̄pq(fp, fq) = |dp(fp)− dp(fq)|+ |dq(fq)− dq(fp)|, (3.8)

where dp(fq) = aqpx + bqpy + cq. The deviations |dp(fp) − dp(fq)| and |dq(fq) − dq(fp)| in
Equation (3.8) are illustrated as red arrows in Figure 3.4 (a). The sum of the deviations ψ̄pq(fp, fq)

is truncated by τdis to allow sharp jumps in disparity at depth edges. This formulation enforces
second order smoothness for the resulting disparity map, because it gives no penalty when p and q
are on the same disparity plane as shown in Figure 3.4 (b). Note that if a = b = 0 (front-parallel
plane) is forced as shown in Figure 3.4 (c), this smoothness function becomes the standard truncated
linear model min(2|dp − dq|, τdis) where dp = cp is a scalar disparity value assigned to pixel p.
This term has a front-parallel bias and should be avoided [Woodford et al., 2009; Olsson et al.,
2013]. Notice that in spite of its useful property, our truncated smoothness term cannot be used in
the convex optimization framework of [Heise et al., 2013] for its high non-convexity.

Our smoothness term is submodular under expansion moves for taking advantage of GC. A
proof is given by [Olsson et al., 2013] but for the completeness we re-state it as the following
lemma.

Lemma A: The term ψpq(fp, fq) defined by Equation (3.7) satisfies the following submodularity
of expansion moves [Boykov et al., 2001]:

ψpq(α, α) + ψpq(β, γ) ≤ ψpq(β, α) + ψpq(α, γ). (3.9)

Proof. Obviously, ψ̄pq(α, α) = 0. Therefore,

ψ̄pq(α, α) + ψ̄pq(β, γ) = ψ̄pq(β, γ)

= |dp(β)− dp(γ)|+ |dq(β)− dq(γ)|

= | (dp(β)− dp(α))− (dp(γ)− dp(α)) |+ | (dq(β)− dq(α))− (dq(γ)− dq(α)) |

≤ |dp(β)− dp(α)|+ |dp(γ)− dp(α)|+ |dq(β)− dq(α)|+ |dq(γ)− dq(α)|

= ψ̄pq(β, α) + ψ̄pq(α, γ). (3.10)

Thus, ψ̄pq(fp, fq) satisfies the submodularity of expansion moves. For its truncated function,

min
(
ψ̄pq(α, α), τ

)
+ min

(
ψ̄pq(β, γ), τ

)
= min

(
ψ̄pq(β, γ), τ

)
≤ min

(
ψ̄pq(β, α) + ψ̄pq(α, γ), τ

)
≤ min

(
ψ̄pq(β, α), τ

)
+ min

(
ψ̄pq(α, γ), τ

)
. (3.11)
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Figure 3.4 Illustration of our smoothness term. Essentially, our smoothness term penalizes the deviations
of neighboring disparity planes shown as red arrows in (a). When neighboring pixels are on the same
disparity plane as shown in (b), the smoothness term gives no penalty; thus, it enforces second order
smoothness for the resulting disparity map. If a = b = 0 (front-parallel plane) is forced as shown in (c), the
term becomes equivalent to the standard truncated linear model, yielding a front-parallel bias.
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Therefore, the truncated function of ψ̄pq(fp, fq) also satisfies the submodularity. Becauseψpq(fp, fq)

is a constant-factored function of ψ̄pq(fp, fq), i.e., λmax (ωpq, ε) is constant to f , our smoothness
term ψpq(fp, fq) also satisfies the submodularity.

3.3.2 Locally Shared Labels

As the main contribution of this paper, we introduce locally shared labels for efficiently optimizing
continuous MRFs. The locally shared labels are the combination of pixel and region labels, in
which label spaces are shared among neighbors, and they enable per-pixel estimation of continuous
solutions as well as fast propagations.

Pixel and Region Labels

Pixel labels are a small number (say, K) of discrete disparity labels (or candidate labels) defined
at each pixel p, which we refer to as a pixel label set, Lp = {l(0)p , l

(1)
p , . . . , l

(K−1)
p }, l(i)p ∈ S . The

pixel label sets are shared among neighboring pixels. In addition, we define region labels that
give additional candidate labels for accelerating spatial propagation and avoiding stuck at a local
minima. We use a regular grid structure for regions, which are indexed by the region coordinates
r ∈ (R ⊂ Z2) like the pixel coordinates. Region labels define for a region r a set ofKR candidate
labels Rr ⊂ S, which we call a region label set. Each label set Rr gives candidate labels for
pixels in the region r and pixels in the neighboring regions as well, i.e., Rr is also shared among
neighboring regions just like pixel labels.

During the inference, for each pixel p, our method chooses the best candidate label fp from
the union of pixel and region label sets that are shared for the pixel p:

Cp = Lp ∪ Lq ∪Rr ∪Rs, (3.12)

where q, r, s represent p’s neighboring pixels, the region that p belongs to, and the neighboring
regions to r, respectively. By sharing label sets among neighbors, good candidate labels are
spatially propagated to nearby pixels. The concept of pixel and region labels is illustrated in
Figure 3.5.

Proposal Generation for Fusion

During the inference, we repeatedly seek the best labeling f (t) for the current label sets {Lp} and
{Rr}, and refine the label sets. The former part, i.e., the selection and propagation of candidate
labels in {Lp} and {Rr}, is cast as fusion-based energy minimization [Lempitsky et al., 2010], as
described in the rest of this section. Consider the essential function of fusion is to make a good
solution f by fusing a number of proposal disparity maps {g(0), g(1), . . . , g(n−1)}, where at each
pixel fp is assigned one of n disparity labels {g(0)p , g

(1)
p , . . . , g

(n−1)
p }. In our method, we build a

special form of proposals from {Lp} and {Rr} in a manner that achieves the propagation of pixel
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Figure 3.5 Illustrations of pixel and region labels, and proposal construction. For simplicity, they are
illustrated by 1D images with the blue nodes representing pixels. The boxes Lp and Rr represent a set of
candidate disparity labels given for the pixel p and pixels in the region r, respectively. The horizontal red
lines signify that the label sets {Lp} and {Rr} are shared between neighbors. The label sets are aligned
so as to make proposal disparity maps g(j) for fusion. In particular, proposal construction of pixel labels
is illustrated for a 2D image in (c) indicating that, in each proposal g(j), candidate labels defined at blue
pixels are shared between red neighbors.
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and region labels. To make proposals from pixel labels, we copy each candidate label l(i)p ∈ Lp to
the j-th proposal g(j) by setting

g(j)q ← l(i)p , (3.13)

where q is the nine neighboring pixels around and including p (i.e., the pixels where the candidate
label l(i)p is shared), and j is given as

j = K (4 (py mod 4) + (px mod 4)) + i. (3.14)

Here, mod is the modulo operation, and px and py are p’s coordinates specified as px ∈ [0,width− 1]

and py ∈ [0, height− 1]. Figure 3.5 (a) illustrates this construction for the case of a 1D image
with K = 1 (i.e., Lp = {l(0)p }) for simplicity, where a horizontal layer of candidate labels at
vertical position j represents a proposal g(j). Figure 3.5 (c) illustrates for a 2D image showing
that candidate labels at blue pixels are shared among red neighbors in each proposal g(j). The
integer 4 in Equation (3.14) means that, in each proposal, we leave a “gap” (shown as gray pixels
in Figure 3.5 (c) that represent no candidate labels) between each “shared region” (see Figure 3.5
(c)) for ensuring submodularity, which we describe later. We assign an infinite unary cost to
those invalid labels to ensure that such labels are avoided during the inference. For region labels,
proposals are constructed in the same manner with pixel labels by regarding a region as a pixel as
shown in Figure 3.5 (b). The fusion is performed using the proposals generated from both pixel
and region labels. The visualization of this process with real data is shown in Figure 3.6.

This particular form of proposal construction guarantees that a binary fusion of an arbitrary
solution f and any of the proposals g = g(j) is submodular, thus it is exactly solved via GC.
A proof and detailed descriptions about this submodularity are given in the next section. With
this submodularity guarantee, we only need to use a standard GC [Kolmogorov and Zabin, 2004;
Boykov and Kolmogorov, 2004] instead of employing expensive QPBO-GC [Kolmogorov and
Rother, 2007] used in usual fusion moves [Lempitsky et al., 2010].

In addition, this proposal generation helps obtain smooth solutions because multiple pixels in
shared regions are allowed to move-at-once to the same candidate label at one binary fusion. This
effect becomes more significant with region labels because of their large shared regions. In fact,
region labels make the key factor in our algorithm for both efficiency and accuracy as we will see
in the experiment.

Submodular Fusion Moves with Locally Shared Labels

Here we prove the following statement:

Lemma B: If g is a proposal solution constructed from pixel or region labels, the binary-fusion
energy E(f ′|f, g) is submodular, i.e., all pairwise terms ψpq in E(f ′|f, g) satisfy the following
submodularity of fusion moves [Lempitsky et al., 2010; Kolmogorov and Rother, 2007; Kolmogorov
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(a) pixel labels (b) region labels of
5× 5-size

(c) region labels of
25× 25-size

(d) initial random disparity map (e) after fused with pixel labels

(f) after fused with region labels of
5× 5-size

(g) after fused with region labels of
25× 25-size

Figure 3.6 Fusion process with real data. We show intermediate fusion process in the first iteration for
Teddy, i.e., the process from Figure 3.1 (a) to (b). Here, (d) an initial random disparity map is successively
fused with proposals generated from (a) pixel labels, (b) region labels of 5× 5-size, and (c) region labels of
25× 25-size, resulting in intermediate disparity maps shown in (e), (f), and (g), respectively.
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shared region local expansion move (not used)

(a) Proposal from pixe labels (b) Multiple
local-expansion-moves

(c) Non-submodular
proposal

Figure 3.7 Illustration of our proposals using local shared labels. An example proposal generated from
pixel labels is shown in (a). Because expansion moves are fusion with globally-constant proposals, our
locally-constant proposals can be regarded as multiple local-expansion-moves as shown in (b). If proposals
are made so that share regions are densely aligned as shown in (c), this will produce non-submodular terms.
So we do not use such proposals.

and Zabin, 2004]:

ψpq(gp, gq) + ψpq(fp, fq) ≤ ψpq(fp, gq) + ψpq(gp, fq). (3.15)

If it holds, the binary-fusion energy E(f ′|f, g) can be optimally minimized via GC. Note that this
condition does not generally hold in standard fusion moves [Lempitsky et al., 2010] that assume g
is arbitrary.

Proof. We show here only the case of g generated from pixel labels, but the same result can be
easily derived for region labels. See Figure 3.7 (a) that depicts an example proposal g constructed
from pixel labels. We make g by setting a consistent label at pixels in each “shared region”, and an
invalid label with an infinite unary cost at gray pixels. Here, all the pairwise terms ψpq(f

′
p, f

′
q) in

E(f ′|f, g) can be summarized into three types: pairwise terms inside shared regions ψab(f
′
a, f

′
b),

outside shared regions ψcd(f
′
c, f

′
d), and between shared and invalid regions ψac(f

′
a, f

′
c). Examples

of the four pixels a, b, c, and d are visualized in Figure 3.7 (a). Because of the infinite unary
costs of gc and gd, the binary variables f ′c and f ′d are forced to take their current labels fc and
fd, respectively. Thus, ψac(f

′
a, f

′
c) becomes an a’s unary potential ψac(f

′
a, fc), and ψcd(f

′
c, f

′
d)

becomes a constant energy ψcd(fc, fd), both of which can be ignored from the submodularity
condition that only depends on pairwise potentials. The remaining pairwise terms are those
inside shared regions ψab(f

′
a, f

′
b), for which ga = gb holds because labels of g are constant in

each shared region. Using these results, we substitute gp = gq = α, fp = β, and fq = γ into
Equation (3.15), resulting in a relaxed condition known as the submodularity of expansion moves
shown in above Equation (3.9). This condition holds for our pairwise term ψpq, as proved in the
previous section.
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To understand this result intuitively, we remind readers that expansion moves [Boykov et al.,
2001] are special cases of fusion moves where each proposal g is given globally-constant, i.e., gp
takes a consistent label for all pixels p. On the other hand, our proposal g is made locally-constant
by shared regions; thus, a fusion move with our proposal g can be interpreted as multiple local-
expansion-moves, where each shared region produces one local-expansion-move, as illustrated in
Figure 3.7 (b). Therefore, in our method, the condition for deriving submodularity is the same
with that of expansion moves.

Note that if we use an integer 3 instead of 4 in Equation (3.14) that we use for generating
proposals g(j) from pixel labels, we obtain proposals where shared regions are densely aligned
without leaving “gaps” of invalid labels, as illustrated in Figure 3.7 (c). In this case, E(f ′|f, g)
is not generally submodular. To see this, we summarize all pairwise terms in E(f ′|f, g) into
two types: those inside the same shared regions ψab(f

′
a, f

′
b), and between two shared regions

ψac(f
′
a, f

′
c). Examples of the three pixels a, b, and c are visualized in Figure 3.7 (c). Here, the

terms ψac(f
′
a, f

′
c) can be non-submodular because all of ga, gc, fa, and fc are arbitrary.

3.3.3 Optimization

The overview of our optimization procedure is summarized in Algorithm 3.1.

Algorithm 3.1 Overview of the proposed optimization procedure
1: Initialize {Lp} and {Rr} randomly.
2: repeat
3: ♦ Optimize labeling f for current label sets:

f (t) = argminE(f) with label sets {Lp} and {Rr}
4: ♦ Refine label sets {Lp} and {Rr}:
5: for all pixels p ∈ P do
6: C̃p ← Cp with perturbation.
7: Lp ← best K − 1 candidate labels c ∈ (Lp ∪ C̃p) \ {f (t)p } that minimize Ep(c|f (t))
8: Lp ← Lp ∪ {f (t)p }
9: end for

10: for all regions r ∈ R do
11: Rr ← random KR candidate labels from {f (t)p | pixels p in the region r}
12: end for
13: until convergence

As discussed in the previous section, our optimization uses an iterative framework, where we
alternately optimize the labeling f with given label sets {Lp} and {Rr}, and refine the label sets
{Lp} and {Rr} locally with the labeling f fixed. This alternating optimization is similar to the
PEARL algorithm [Isack and Boykov, 2012] described in Section 2.4.2.

Our optimization begins with randomly initializing the label sets {Lp} and {Rr}. To sample
the allowed solution space evenly, we take the initialization strategy described in [Bleyer et al.,
2011]. For l(i)p ∈Lp at p=(px, py)

T , we select a random disparity z0 in the allowed disparity range
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[0, dispmax]. Then, a random unit vector n=(nx, ny, nz)
T and z0 are converted to the plane

representation by ap = −nx/nz , bp = −ny/nz , and cp = −(nxpx + nypy + nzz0)/nz . For the
region label sets {Rr}, we randomly pick KR pixels in each region, and copy the candidate label
l
(0)
p ∈ Lp of the randomly chosen pixels p to the region label set.

At line 3 of Algorithm 3.1, we optimize the labeling f by the procedure illustrated in the
previous section. It can be approximately solved by fusing proposals constructed from pixel and
region label sets {Lp} and {Rr}. This process is visualized in Figure 3.6

In lines 5–9, we refine the pixel label sets {Lp}. At each pixel p, we first randomly perturb p’s
candidate labels Cp of Equation (3.12) and obtain C̃p. As the refined Lp, we select the best K
candidate labels from the union of C̃p and the current Lp that minimize the following local energy
at the pixel p:

Ep(s|f (t)) = φp(s) +
∑

q∈N (p)

ψpq(s, f
(t)
q ) , s ∈ S. (3.16)

Here, the refined label set Lp is forced to contain the current candidate label f (t)p to ensure that, in
the next iteration, the solution f (t+1) can stay at f (t), thereby the energy does not increase, i.e.,
E(f (t)) ≥ E(f (t+1)) holds throughout the iterations. Perturbation is implemented as described
in [Bleyer et al., 2011]. Namely, each candidate label (a, b, c)T ∈ Cp is converted to disparity d
and normal vector n. We then add a random disparity ∆d ∈ [−rd, rd] and a random unit vector ∆n

to them, respectively, as d′ = dp +∆d and n′ = n+ rn∆n. Finally, d′ and n′/|n′| are converted
to the plane representation (a′, b′, c′)T ∈ C̃p as a perturbed candidate label. The values rd and rn
define an allowed change of planes. We start by setting rd ← dispmax/2 and rn ← 1. After each
iteration, we update them by rd ← rd/2 and rn ← rn/2.

In lines 10–12, we update the region label sets {Rr}. As done in the initialization, we again
take a random-pick-up scheme. This time, the current solution f (t)p of randomly chosen pixels p is
taken as the region labels.

Finally, after the whole process, we perform the post-processing using left-right consistency
check and median filtering as described in [Bleyer et al., 2011] for further improving the results.
This step is mainly for estimating disparity at occluded pixels but some mismatching pixels are
also improved. This scheme is widely employed in recent methods [Rhemann et al., 2011; Bleyer
et al., 2011; Besse et al., 2012; Lu et al., 2013; Heise et al., 2013].

3.4 Experiments

In the experiments, we first evaluate our method on the Middlebury benchmark. Then, we assess
the effect of region labels, and compare our method with PMBP [Besse et al., 2012] that is closely
related to our approach. To further demonstrate the effectiveness of our method, we show additional
results for two outdoor scenes and nine Middlebury datasets including failure examples.
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Settings

We use the following settings as default throughout the experiments. We use a PC with a Xeon
CPU (2.53 GHz × 4 cores) and NVIDIA GeForce GTX-295 GPU3. The parameters of our data
term are set as {τcol, τgrad, γ, α} = {10, 2, 10, 0.9} as specified in [Bleyer et al., 2011]. The size
of supporting windows is set to 41 × 41, which is the same setting with PMBP [Besse et al.,
2012]. For the smoothness term, we use {λ, τdis, ε} = {20, 1, 0.01} and eight neighbors for N .
For optimization, three-layer locally shared labels are used: pixel labels with K = 2, region labels
of size 5 × 5 with KR = 2, and also regions labels of size 25 × 25 with KR = 2, and a GC
implementation of [Boykov and Kolmogorov, 2004] is used. We iterate twice for each proposal
in fusion stage, and iterate the outer-loop process ten times. The computation of unary costs is
performed in parallel on GPU, and pairwise costs are computed on four CPU cores.

3.4.1 Evaluation on the Middlebury Benchmark

We show in Table 3.2 selected rankings on the Middlebury stereo benchmark for 0.5-pixel accuracy.
Our method achieves the current best average rank (3.5) and bad-pixel-rate (6.63%) amongst more
than 155 stereo methods. Even without post-processing, our method still outperforms the other
methods in average rank, despite that methods [Bleyer et al., 2011; Besse et al., 2012; Lu et al.,
2013; Heise et al., 2013] use the post-processing. Compared with closely related approaches
(PMBP [Besse et al., 2012] and PatchMatch stereo [Bleyer et al., 2011]), which are ranked seventh
and ninth in Table 3.2, although results of PMBP for Cones are slightly better than ours, our
method consistently outperforms the two methods in the other evaluations. We summarize the
results of our method in Figures 3.8 to 3.11. Note that Tsukuba may not be appropriate for accurate
evaluations, because its ground truth has only integer precision. More results including outdoor
scenes and failures are shown in Sections 3.4.4 and 3.4.5.

3.4.2 Effect of Region Labels

To observe the effect of region labels, we assess the performance using three different settings: (1)
only pixel labels with K = 6; (2) pixel labels with K = 4 and region labels of size 5× 5 with
KR = 2; (3) pixel labels with K = 2, region labels of size 5× 5 with KR = 2, and also regions
labels of size 25× 25 with KR = 2 (the default setting for our method described above). Among
the three settings, the number of candidate labels given for each pixel (i.e., |Cp|) is kept consistent.
We use λ = 40 but keep the other parameters as default. Using these settings, we observe the
performance variations by estimating the disparities of only the left image of the Cloth1 dataset
without the post-processing.

In Figure 3.12, we show the results of the three cases after ten iterations. Also, plots in
Figures 3.13 to 3.15 show the energy variations of the energy function, data term, and smoothness

3Although GTX-295 has two GPU cores, in this experiment we used only one of them. Our method itself allows
multi-core GPU processing.
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(a) left view (b) right view

(c) raw result (d) after post-processing

(e) error map (0.5-pixel threshold) (f) ground truth

Figure 3.8 Results of Venus in Middlebury benchmark. From top-left to right-bottom, we show (a) left
and (b) right views of input images, (c) our result before post-processing, (d) after post-processing, (e) the
error map of the result after post-processing, and (f) the ground truth. In the error maps, white and black
pixels indicate correct and incorrect disparities, while gray indicates incorrect but occluded pixels. Note
that Tsukuba may not be appropriate for accurate evaluations because its ground truth has only integer
precision.
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(a) left view (b) right view

(c) raw result (d) after post-processing

(e) error map (0.5-pixel threshold) (f) ground truth

Figure 3.9 Results of Venus in Middlebury benchmark. From top-left to right-bottom, we show (a) left
and (b) right views of input images, (c) our result before post-processing, (d) after post-processing, (e) the
error map of the result after post-processing, and (f) the ground truth. In the error maps, white and black
pixels indicate correct and incorrect disparities, while gray indicates incorrect but occluded pixels.
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(a) left view (b) right view

(c) raw result (d) after post-processing

(e) error map (0.5-pixel threshold) (f) ground truth

Figure 3.10 Results of Teddy in Middlebury benchmark. From top-left to right-bottom, we show (a) left
and (b) right views of input images, (c) our result before post-processing, (d) after post-processing, (e) the
error map of the result after post-processing, and (f) the ground truth. In the error maps, white and black
pixels indicate correct and incorrect disparities, while gray indicates incorrect but occluded pixels.
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(a) left view (b) right view

(c) raw result (d) after post-processing

(e) error map (0.5-pixel threshold) (f) ground truth

Figure 3.11 Results of Cones in Middlebury benchmark. From top-left to right-bottom, we show (a) left
and (b) right views of input images, (c) our result before post-processing, (d) after post-processing, (e) the
error map of the result after post-processing, and (f) the ground truth. In the error map, white and black
pixels indicate correct and incorrect disparities, while gray indicates incorrect but occluded pixels.
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Table 3.2 Middlebury benchmark evaluations for 0.5-pixel precision. Our method achieves the current best
average rank of 3.5 and bad-pixel-rate of 6.63% among more than 150 stereo algorithms. In the last row,
we also show the results by our method without post-processing, which still outperform the other methods
in average rank and bad-pixel-rate. In all, results are evaluated for all pixels where the ground truth is given,
while only for non-occluded pixels in nonocc, and around depth discontinuities in disc. PM-Huber [Heise
et al., 2013] uses Huber regularization in a joint framework of PatchMatch and convex optimization, thus
their approach is limited to convex energies. SubPixSearch [Mizukami et al., 2012] finds sub-pixel disparity
by refining integer-valued initial disparity maps. PMF [Lu et al., 2013] incorporates fast ege-preserving
filtering techniques into PatchMatch stereo for reducing computational complexity, but uses no smoothness
regularization. PMBP [Besse et al., 2012] incorporates smoothness regularization into PatchMatch stereo
using BP. PM (PatchMatch stereo) [Bleyer et al., 2011] uses PatchMatch inference for estimating per-pixel
disparity planes but uses no smoothness regularization. The rankings are obtained on November first, 2013
at the online benchmark site of [Scharstein and Szeliski, 2001].

term after each iteration, respectively. Figure 3.13 shows that region labels play a critical role
in minimizing energies. Figures 3.14 and 3.15 indicate that region labels effectively reduce the
energies of both the data and smoothness terms, which shows the contribution of region labels for
fast propagation of good candidate labels as we intended. On the other hand, if only pixel labels
are used, the solution is trapped at a bad local minima producing a noisy result as in Figure 3.12 (c).
Although the use of the large region labels does not make a significant difference in the converged
energy values, the difference is obvious if we see Figures 3.12 (d) and 3.12 (e).

3.4.3 Comparison with PMBP

We compare our method with PMBP [Besse et al., 2012] that is the closest method to ours. For
a fair comparison, we use four neighbors for N in Equation (3.2), which is the same setting as
PMBP. For a comparable smoothness weight with the default setting (eight-neighbor N ), we use
λ = 40 and keep the other parameters as default. For PMBP, we use the same model as ours;
the only difference from the original PMBP is the smoothness term, which does not satisfy the
submodularity of Equation (2.9). PMBP also defines K candidate labels for each pixel, for which
we set K = 1 and K = 5 (original paper uses K = 5). We show the comparison using the Cones
dataset by estimating the disparity map of only the left image without the post-processing.

Figures 3.16 to 3.18 show the temporal transition of the energy values in a full- and zoomed-
scales, and the 0.5-pixel error rates, respectively. We show the performance of our method using
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(a) left view of Cloth1 (b) visibility map of left view

(c) only pixel labels (d) pixel and region (5× 5) labels

(e) pixel and region
(5× 5 and 25× 25) labels (f) ground truth

Figure 3.12 Visual effect of region labels. (a) The left view of input images and (b) its visibility map where
black pixels are invisible from the right view. (c) Using only pixel labels yields a noisy result, which is
improved by (d) adding region labels. (e) Large region labels are effective for occluded regions, resulting in
almost the same disparity map with (f) ground truth. These are all raw results without the post-processing.
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Figure 3.13 Effect of region labels in minimizing overall energies. Energy transitions of the energy function
E(f) w.r.t. the number of iterations are shown. Region labels play a critical role in reducing the energies.
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Figure 3.14 Effect of region labels in minimizing data terms. Energy transitions of the data term w.r.t. the
number of iterations are shown. Region labels enable fast spatial propagations of good candidate labels as
we intend.
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Figure 3.15 Effect of region labels in minimizing smoothness term energies. Energy transitions of the
smoothness term w.r.t. the number of iterations are shown. Region labels help to find spatially smooth
solutions thanks to the good properties of GC.
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its GPU and CPU (1 or 4 CPU-cores) implementations. For PMBP, we also implemented the unary
cost computation on GPU, but it became rather slow, possibly due to the overhead of data transfer.
Efficient GPU implementations for PMBP are not available in literature4. Therefore, the plots
show PMBP results that use a single CPU core. Figures 3.16 and 3.17 show that PMBP works
much faster than our CPU implementation; however, our GPU implementation shows significantly
faster convergence. Furthermore, our method reaches the better solution than that of PMBP in
both energy values and error rates5. At around 4200[sec] of Figures 3.17 and 3.18, the solution
obtained by our CPU implementation marked the lower error rate than that of PMBP in spite of its
higher energy. Figure 3.19 shows the resulting disparity maps obtained by our method and PMBP
with K = 5. Our result shows greater accuracy around the edge and occluded regions.

3.4.4 Additional Results for Outdoor Scenes

To further demonstrate the effectiveness of our method, we applied our stereo method for outdoor
scene images. We use Beijing Lion and Cachan Statue datasets [Monasse, 2011] whose input
image pairs are rectified and their backgrounds are removed as a pre-pcocessing. Figures 3.20 and
3.21 show the rectified input image pairs and stereo results for the two datasets. We observe major
errors only around occluded regions.

3.4.5 Additional Results for Middlebury Dataset

In Figures 3.22 to 3.28, we show additional seven results for Middlebury dataset using the default
settings. For a pure evaluation of the performance of our stereo method, they are all shown as raw
results without the post-processing. As shown in the results, disparities are well estimated even
for some occluded regions without tuning parameters.

Figures 3.29 and 3.30 show some failure cases. For Bowling1, we observe two difficulties that
cause the large errors on the white cloth. One is that those regions are relatively texture-less. The
other is that there are slight intensity differences between the input image pair. To improve the
result, one can put a big weight to the gradient photo-consistency term by setting a large value
to α. Also, adopting a photo-consistency measure that is robust to radiometric differences, such
as normalized cross correlation, is another choice. Using the selective combination of color and
gradient constraints proposed in [Xu et al., 2012] may also work. For Plastic, we obtain significant
errors simply because it has large texture-less regions.

4 GPU-parallelization schemes of BP are not directly applicable due to PMBP’s unique settings. The “jump flooding”
used in the original PatchMatch [Barnes et al., 2009] reports 7x speed-ups by GPU. However, because it propagates
candidate labels to distant pixels, it is not applicable to PMBP that must propagate messages to neighbors, and is not as
efficient as our 100x, either.

5The CPU implementation of our method also reaches almost the same energy and error rate after about 42000[sec]
by a single core, 9150[sec] by four cores.
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Figure 3.16 Efficiency comparison with PMBP [Besse et al., 2012] in a full-scale. Accuracies are evaluated
for all-regions after each iteration. PMBP is much faster than our CPU implementation; however, our GPU
implementation shows significantly faster convergence. PMBP cannot be efficiently performed in parallel
on GPUs.
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Figure 3.17 Efficiency comparison with PMBP [Besse et al., 2012] in a zoomed-scale. Accuracies are
evaluated for all-regions after each iteration. Our method reaches much lower energies than PMBP at
convergence.
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Figure 3.18 Accuracy comparison with PMBP [Besse et al., 2012]. Accuracies are evaluated for all-regions
after each iteration. Our method achieves greater accuracy than PMBP at convergence. Even not at
convergence, e.g., at around 4200[sec], the solution obtained by our CPU implementation achieves greater
accuracy than PMBP in spite of its higher energy.
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(a) our method (b) PMBP

edges (pink box) ground truth our method PMBP

occluded (yellow box) ground truth our method PMBP

Figure 3.19 Visual comparison with PMBP [Besse et al., 2012]. We show raw results of (a) our method
and (b) PMBP without post-processing. Our method finds better disparities around edges (e.g. pink box)
and occluded regions (e.g. yellow box).
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(a) left view (b) right view

(c) raw result (d) after post-proccessing

(e) 3D rendered image

Figure 3.20 Results of Beijing Lion dataset [Monasse, 2011]. We show (a) left and (b) right views of
rectified input image pairs, our results (c) before and (d) after post-processing, and (e) a 3D rendered image.
We observe major errors only around occluded regions. Also, despite the great illumination differences
between input image pairs, our method works robustly.
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(a) left view (b) right view

(c) raw result (d) after post-proccessing

(e) 3D rendered image

Figure 3.21 Results of Cachan Statue dataset [Monasse, 2011]. We show (a) left and (b) right views of
rectified input image pairs, our results (c) before and (d) after post-processing, and (e) a 3D rendered image.
We observe major errors only around occluded regions.
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(a) left view (b) right view

(c) raw result (d) ground truth

(e) error map (11.4%) (f) visibility map

Figure 3.22 Results of Aloe in Middlebury benchmark. From top-left to right-bottom, we show (a) left
and (b) right views of input images, (c) our result without post-processing, (d) ground truth, (e) error map
with 0.5-pixel threshold, and (f) visibility map of the left view. In the error map, white and black pixels
indicate correct and incorrect disparities, while gray indicates incorrect but occluded pixels.

50



3.4. EXPERIMENTS

(a) left view (b) right view

(c) raw result (d) ground truth

(e) error map (19.0%) (f) visibility map

Figure 3.23 Results of Cloth2 in Middlebury benchmark. From top-left to right-bottom, we show (a) left
and (b) right views of input images, (c) our result without post-processing, (d) ground truth, (e) error map
with 0.5-pixel threshold, and (f) visibility map of the left view. In the error map, white and black pixels
indicate correct and incorrect disparities, while gray indicates incorrect but occluded pixels.
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(a) left view (b) right view

(c) raw result (d) ground truth

(e) error map (10.8%) (f) visibility map

Figure 3.24 Results of Cloth3 in Middlebury benchmark. From top-left to right-bottom, we show (a) left
and (b) right views of input images, (c) our result without post-processing, (d) ground truth, (e) error map
with 0.5-pixel threshold, and (f) visibility map of the left view. In the error map, white and black pixels
indicate correct and incorrect disparities, while gray indicates incorrect but occluded pixels.
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(a) left view (b) right view

(c) raw result (d) ground truth

(e) error map (17.1%) (f) visibility map

Figure 3.25 Results of Baby3 in Middlebury benchmark. From top-left to right-bottom, we show (a) left
and (b) right views of input images, (c) our result without post-processing, (d) ground truth, (e) error map
with 0.5-pixel threshold, and (f) visibility map of the left view. In the error map, white and black pixels
indicate correct and incorrect disparities, while gray indicates incorrect but occluded pixels.
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(a) left view (b) right view

(c) raw result (d) ground truth

(e) error map (13.0%) (f) visibility map

Figure 3.26 Results of Rocks2 in Middlebury benchmark. From top-left to right-bottom, we show (a) left
and (b) right views of input images, (c) our result without post-processing, (d) ground truth, (e) error map
with 0.5-pixel threshold, and (f) visibility map of the left view. In the error map, white and black pixels
indicate correct and incorrect disparities, while gray indicates incorrect but occluded pixels.
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(a) left view (b) right view

(c) raw result (d) ground truth

(e) error map (10.7%) (f) visibility map

Figure 3.27 Results of Wood1 in Middlebury benchmark. From top-left to right-bottom, we show (a) left
and (b) right views of input images, (c) our result without post-processing, (d) ground truth, (e) error map
with 0.5-pixel threshold, and (f) visibility map of the left view. In the error map, white and black pixels
indicate correct and incorrect disparities, while gray indicates incorrect but occluded pixels.
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(a) left view (b) right view

(c) raw result (d) ground truth

(e) error map (10.7%) (f) visibility map

Figure 3.28 Results of Wood2 in Middlebury benchmark. From top-left to right-bottom, we show (a) left
and (b) right views of input images, (c) our result without post-processing, (d) ground truth, (e) error map
with 0.5-pixel threshold, and (f) visibility map of the left view. In the error map, white and black pixels
indicate correct and incorrect disparities, while gray indicates incorrect but occluded pixels.
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(a) left view (b) right view

(c) raw result (d) ground truth

(e) error map (34.7%) (f) visibility map

Figure 3.29 Results of Bowling1 in Middlebury benchmark. From top-left to right-bottom, we show (a)
left and (b) right views of input images, (c) our result without post-processing, (d) ground truth, (e) error
map with 0.5-pixel threshold, and (f) visibility map of the left view. In the error map, white and black pixels
indicate correct and incorrect disparities, while gray indicates incorrect but occluded pixels.

57



3.4. EXPERIMENTS

(a) left view (b) right view

(c) raw result (d) ground truth

(e) error map (56.0%) (f) visibility map

Figure 3.30 Results of Plastic in Middlebury benchmark. From top-left to right-bottom, we show (a) left
and (b) right views of input images, (c) our result without post-processing, (d) ground truth, (e) error map
with 0.5-pixel threshold, and (f) visibility map of the left view. In the error map, white and black pixels
indicate correct and incorrect disparities, while gray indicates incorrect but occluded pixels.
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3.5 Conclusions

3.5.1 Summary

In this paper, we presented an accurate and efficient stereo matching method for continuous
disparity estimation. Unlike previous approaches that use fusion approaches [Lempitsky et al.,
2010; Olsson et al., 2013; Woodford et al., 2009], our method is subproblem optimal and only
requires randomized initial proposals. By comparing with a recent continuous MRF stereo method,
PMBP [Besse et al., 2012], our method showed an advantage in efficiency and comparable or
greater accuracy.

The key contribution of this work is the use of GC and locally shared labels. The intrinsic
property of GC, such that it optimizes all nodes simultaneously, has an advantage and our locally
shared labels are designed for taking advantage of the good property of GC as well as for enabling
spatial propagation in GC-based optimization; namely, the locally shared labels derive a subproblem
optimality in GC, and furthermore, the joint use of GC and the locally shared labels helps to find
locally planar, smooth solutions when combined with pixelwise disparity plane formulations;
spatial propagation is an essential technique for searching complex label spaces, which was
originally proposed by Barnes et al. [2009, 2010] as a sequential algorithm but not suitable for the
global inference manner of GC. Our locally shared labels enable spatial propagation in GC-based
optimization for achieving efficient inference.

3.5.2 Discussions and Future Works

We discuss the current limitations and potential applications of our method, and present the future
directions of this work.

Occlusions

Our current formulation does not explicitly treat occlusions but rather deals with them at post-
processing. However, we believe that some occlusion handling schemes based on GC optimiza-
tion [Kolmogorov and Zabih, 2001, 2002; Wei and Quan, 2005; Woodford et al., 2007] can be
incorporated into our framework, which may yield even greater accuracy.

Fast Cost-Volume Filtering

In our method, the computational complexity of calculating window-based matching costs depends
on the size of matching windows. In the context of cost-volume filtering, fast edge-preserving
filtering methods [Zhang et al., 2009; He et al., 2013; Lu et al., 2012] have been proposed whose
complexity is independent of the window size. Basically, those filtering techniques can be used
when a label space is defined globally as demonstrated by Rhemann et al. [2011]. Recently, Lu
et al. [2013] show that such techniques can be incorporated into PatchMatch-based inference
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whose label space is defined locally and independently for each pixel. Since their key idea of
region-based cost calculation is similar to our region labels, we believe that our method can be
extended so as to allow the use of fast filtering techniques for further accelerating the computation.

Textureless Regions

The failure examples shown in Figures 3.30 and 3.29 indicate an obvious limitation of our method.
In fact, stereo matching is not able to estimate those textureless regions in principle. To deal with
this issue, the use of ground control points [Wang and Yang, 2011] is a practical choice. The
ground control points are a set of sparse but reliable depth points obtained by e.g. depth sensors.
How to use those sparse scalar depth points for helping the estimation of dense 3D planes is an
open question.
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4
MAP Estimation of Higher-Order MRFs for

Segmentation

4.1 Introduction

Since the pioneer work of Boykov and Jolly [Boykov and Jolly, 2001], the use of Markov random
field formulations [Geman and Geman, 1984] and graph cuts [Kolmogorov and Zabin, 2004;
Boykov and Kolmogorov, 2004] has been becoming one of primary approaches to image segmen-
tation problems [Boykov and Jolly, 2001; Rother et al., 2004; Price et al., 2010; Ayed et al., 2013;
Gorelick et al., 2013, 2012; Taniai et al., 2012; Pham et al., 2011; Ayed et al., 2010; Rother et al.,
2006]. In this approach, the energy function is typically formulated as

E(S) = R(S) +Q(S), (4.1)

where R(S) describes some appearance consistencies between resulting segments S and given
information about target regions, andQ(S) enforces smoothness on segment-boundaries. The form
of R(S) is often restricted to simple linear (i.e., pixelwise unary) forms [Boykov and Jolly, 2001;
Rother et al., 2004; Price et al., 2010] because graph cuts allow globally optimal inference only
for unary and submodular pairwise forms of energies [Boykov and Kolmogorov, 2004]. However,
recent studies [Ayed et al., 2013; Gorelick et al., 2013, 2012; Taniai et al., 2012; Pham et al., 2011;
Ayed et al., 2010; Rother et al., 2006] have shown that the use of higher-order information (i.e.,
non-linear terms such as L1-distance of color histograms) can yield outstanding improvements
over conventional pixelwise consistency measures.

Previous promising approaches try reducing energies by iteratively minimizing either first-order
approximations (gradient descent approach) [Gorelick et al., 2013, 2012; Rother et al., 2004]
or upper-bounds (bound optimization approach) [Ayed et al., 2013; Taniai et al., 2012; Pham
et al., 2011; Ayed et al., 2010] of non-linear functions using graph cuts. The bound optimization
approach has some advantages over the gradient descent approach [Ayed et al., 2013]: it requires
no parameters (e.g., step-size); can be used for non-differentiable functions; never worsens the
solutions during iterations. But we must in turn derive appropriate bounds for individual functions.
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(a) initialization and
ground truth

(b) AC with
initialization A

(c) AC with
initialization B

(d) our method with
initialization B

Figure 4.1 Segmentation with different initialization. AC [Ayed et al., 2013] starts with all-foreground
labeling (initialization A) and successively reduces foreground, often resulting in a visibly incorrect local
minima. Giving a rough initial estimate (initialization B) is (c) not effective for AC [Ayed et al., 2013], but
(d) advantageous for our method. We use L1-distance with 643 bins, and the true histogram learned from
ground truth.

A notable work is auxiliary cuts (AC) by Ayed et al. [Ayed et al., 2013], where they derive a
general bound for a broad class of non-linear functionals. The method has shown better accuracy
and faster convergence than a fast trust region method (FTR) [Gorelick et al., 2013], which is
another state-of-the-art based on gradient descents. One of the major limitations of AC [Ayed et al.,
2013] is, however, that it is formulated to successively reduce target regions, thus the resulting
segments are restricted within initial segments. Such a property actually limits the applications and
performance of the method. See Figure 4.1 for an illustration in histogram matching segmentation.

In this paper, we revisit a submodular-supermodular procedure (SSP) [Narasimhan and Bilmes,
2005], a general bound optimization scheme for supermodular functions using semidifferentials [Fu-
jishige, 2005; Iyer et al., 2013]. SSP was once studied for segmentation in [Rother et al., 2006]
but considered to be ineffective for its poor convergence. From our observation, however, SSP is
actually useful because it allows arbitrary evolution of segments (or bidirectional optimization)
over iterations. We first analyze the bound derived in [Ayed et al., 2013] and reveal its close
connection to SSP. Then, as an extension of both AC [Ayed et al., 2013] and SSP [Narasimhan and
Bilmes, 2005; Rother et al., 2006], we propose a new bound optimization scheme which enables
bidirectional optimization. The performance of our method is experimentally evaluated in some
basic applications, and show an order of magnitude greater accuracy than AC [Ayed et al., 2013].
Furthermore, we present two important applications for our method: (i) The availability of two
(expand ans shrink) directions of optimization allows the use of well-known expansion and swap
algorithms [Boykov and Jolly, 2001] for multiple distribution matching problems. We demonstrate
the effectiveness of our method using L1-distance and the Bhattacharyya measures; (ii) We show
that in some situations (e.g., interactive segmentation) distribution matching can be efficiently
achieved in only a single min-cut, whereas it usually requires at least several min-cuts.
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Contributions:

To summarize, we in this paper

• propose a new bound of non-linear functionals that allows arbitrary directions of convergence
and outperforms the current state-of-the-art [Ayed et al., 2013].

• give general understanding to the bound derived in [Ayed et al., 2013] from the view of
submodular function optimization.

• present, for the first time, general solutions to multiple distribution matching problems.

• show that, in some scenarios, nearly optimal solutions can be obtained in as few as a single
min-cut.

The code will be publicly available.

4.2 Considered Problems and Prior Art

The scope of the problems where our method is applicable is the same or even wider than AC [Ayed
et al., 2013]. By following the problem statements of [Ayed et al., 2013], we present the forms
of the considered problems in this paper, and compare the application ranges of our method and
AC [Ayed et al., 2013].

4.2.1 Linear Functions

Let Ip = I(p) : R2 → Z be an image function, whereZ ⊂ Rd is the space of pixel features such as
RGB intensities. The image Ip is defined on the 2D image coordinates pi = p(i) : Ω→ Z2, where
Ω is the image domain. The objective here is to seek segments S ⊆ Ω such that S minimizesE(S)

of Equation (4.1). When the appearance term R(S) is a linear product of a function h : Ω→ R

R(S) = 〈h, S〉 =
∑
i∈S

h(i) (4.2)

and Q(S) is the sum of pairwise submodular functions, then E(S) can be globally minimized via
graph cuts [Boykov and Kolmogorov, 2004; Kolmogorov and Zabin, 2004] in polynomial times. A
typical example is the BJ model [Boykov and Jolly, 2001], whose unary costs h can be expressed
by

h(i) = − log Pr(Ipi |F) + log Pr(Ipi |B) (4.3)

where Pr(·|F), Pr(·|B) are priori known probability distributions of pixel features inside and
outside the target regions, respectively.
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4.2.2 Type-I: Non-linear Functions of Linear Terms

Similarly to [Ayed et al., 2013], we mainly focus on the following form of non-linear functions:

R(S) =
∑
z∈Z

fz(〈gz, S〉) (4.4)

where gz : Ω→ R+ is a family of non-negative scalar functions defined over the image domain,
and fz : C ⊂ R→ R is an arbitrary convex function defined over a convex domain C. For this
type of functions, our method allows bidirectional optimization (i.e., segments S can arbitrarily
evolve over iterations), which is an important advantage over AC [Ayed et al., 2013] that can only
successively reduce segments (i.e., S0 ⊇ S1 ⊇ S2...). Also, AC [Ayed et al., 2013] assumes only
positive convex functions fz : C ⊂ R→ R+. Examples of this type of functions include but not
limited to the following some useful constrains.

The Lp-Distance Constrains between Histograms

Given a histogram {hz, z ∈ Z} of pixel features within the target regions, the Lp-distance
constrains between the given histogram and the histogram within segments S can be derived from
Equation (4.4) by substituting gz(i) = δ(z − Ipi) and fz(x) = |hz − x|p, p ≥ 1 as∣∣∣∣∣hz −∑

i∈S
δ(z − Ipi)

∣∣∣∣∣
p

(4.5)

where the summation
∑

i∈S δ(z − Ipi) counts the number of pixels in S that fall into bin z.

The Area-Size Constraints

Given a area-size v1 of the target region, the size constraints between v1 and |S| are derived from
Equation (4.4) by substituting gz = 1, z ∈ {1} and fz(x) = |vz − x|p, p ≥ 1, z ∈ {1} as∣∣∣∣∣v1 −∑

i∈S
1

∣∣∣∣∣
p

. (4.6)

4.2.3 Type-II: Non-linear Functions of the Ratio of Linear Terms

Like [Ayed et al., 2013], our method can be also used for the following non-linear functions:

R(S) =
∑
z∈Z

fz

(
〈gz, S〉
〈wz, S〉

)
(4.7)

where gz, ws : Ω→ R+ are arbitrary non-negative functions defined over the image domain, and
fz : C ⊂ R→ R is a convex, monotonically decreasing function defined over a convex domain
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4.2. CONSIDERED PROBLEMS AND PRIOR ART

C. For this type of functions, however, our method does not allow bidirectional optimization.
Therefore, our method proceeds by iteratively reducing segments S just like AC [Ayed et al., 2013].
Examples of this type of functions include the following useful constrains.

Probability Product Kernels

Given a probability distribution Pr(z|F) of pixel features within the target region, probability
product kernels [Jebara et al., 2004] can be derived from Equation (4.7) by substituting gz = kz

some kernel function, wz = 1, fz(x) = [xPr(z|F)]ρ, ρ ∈]0, 1] as

−
∑
z∈Z

(
〈kz, S〉
〈1, S〉

)ρ

Pr(z|F)ρ (4.8)

where the kernel function is e.g. kz(i) = δ(z − Ipi). When ρ = 0.5, the function becomes the
Bhattacharyya coefficient [Bhattacharyya, 1943; Aherne et al., 1998], which has been used for
segmentation in [Ayed et al., 2010; Taniai et al., 2012; Pham et al., 2011].

Kullback-Leibler Divergence

Similarly, the KL divergence can be expressed as

∑
z∈Z

Pr(z|F) log

 Pr(z|F)
〈kz ,S〉
〈1,S〉 + ε

 =

∑
z∈Z

Pr(z|F) log (Pr(z|F))︸ ︷︷ ︸
constant

−
∑
z∈Z

Pr(z|F) log
(
〈kz, S〉
〈1, S〉

+ ε

)
︸ ︷︷ ︸

variable

, (4.9)

where ε > 0 is a small constant for avoiding division by 0. So the variable part of the KL divergence
constrains is derived from Equation (4.7) by substituting gz = kz some kernel function, wz = 1,
fz(x) = −Pr(z|F) log(x+ ε).

4.2.4 Type-III: Non-Linear Functions of Linear Terms for Multi-Models

One of the main contributions of this paper is the application to multi-model segmentation, where
we seek K-division (K ≥ 2) of segments DK = {S1, S2, ..., SK} (i.e., Si ∩ Sj = ∅ if i 6= j, and
S1 ∪ S2 ∪ ... ∪ SK = Ω) by minimizing

E(DK) =
K∑
i=1

Ri(Si) +Q(DK) (4.10)

where Ri(Si) is given as the Type-I form of Equation (4.4), and Q(DK) is the smoothness term.
Therefore, a typical example of this type of functions is multi-model Lp-distance. Additionally,
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we show that the Bhattacharyya coefficient (i.e., Equation (4.8) with ρ = 0.5) can be also used
here by extending the formulation proposed in [Taniai et al., 2012], where the authors particularly
addressed the case of the Bhattacharyya coefficient with K = 2.

4.3 Review of Submodular-Supermodular Procedures

We review SSP [Narasimhan and Bilmes, 2005] as an energy minimization framework for su-
permodular functions. Let R(S) : 2Ω → R be a discrete function. R(S) is submodular and
supermodular, if it satisfies the following inequalities, respectively, for any X,Y ⊆ Ω:

R(X) +R(Y ) ≥ R(X ∩ Y ) +R(X ∪ Y ) (4.11)

R(X) +R(Y ) ≤ R(X ∩ Y ) +R(X ∪ Y ) (4.12)

Therefore, if R(S) is supermodular, then −R(S) is submodular. While any submodular functions
can be minimized in polynomial times [Schrijver, 2000], the minimization of supermodular
functions (i.e., the maximization of submodular functions) is NP-hard.

4.3.1 Bound Optimization

SSP [Narasimhan and Bilmes, 2005] can be seen as a bound optimization framework for super-
modular functions. In bound optimization approaches, a tight upper bound function Ê(S|St)

given an auxiliary variable St is derived for E(S), i.e.,

E(S) ≤ Ê(S|St) and E(St) = Ê(St|St). (4.13)

Then, in the following iterative minimization procedure

St+1 = arg min Ê(S|St), (4.14)

the energy does not go up: E(St) ≥ E(St+1) because E(St) = Ê(St|St) ≥ Ê(St+1|St) ≥
E(St+1).

4.3.2 Semidifferentials

SSP uses semidifferentials [Fujishige, 2005; Iyer et al., 2013] for obtaining the tight upper bounds
of supermodular functions. Given a supermodular function R(S) and X ⊆ Ω, if a modular (or
linear) function H(S) := 〈h, S〉+R(∅) satisfies

H(S)−H(X) ≥ R(S)−R(X) (4.15)

66



4.3. REVIEW OF SUBMODULAR-SUPERMODULAR PROCEDURES

for any S ⊆ Ω, then H(S) is called a semigradient of R at X . We denote ∂R(X) the set of all
the semigradients of R at X , and ∂R(X) is called the semidifferential of R at X . Notice that if
H(X) = R(X) holds, then the semigradient H(S) gives a tight upper bound to the supermodular
function R(S). Such extreme points of ∂R(X) may be obtained using the following theorem.

Theorem (Theorem 6.11 in [Fujishige, 2005]): For anyX ⊆ Ω, a modular functionH(S) :=

〈h, S〉+R(∅) is an extreme point of ∂R(X) if and only if there exists a maximal chain

C : ∅ = S0 ⊂ S1 ⊂ · · · ⊂ Sn = Ω, (4.16)

with Sj = X for some j, such that

H(Si)−H(Si−1) = R(Si)−R(Si−1) (i = 1, 2, · · · , n). (4.17)

SSP [Narasimhan and Bilmes, 2005] makes a semigradient Hσ(S|St) of R(S) at St using a
greedy algorithm as follows. Let σ be a permutation of Ω that assigns the elements in St to the
first |St| positions, i.e., σ(i) ∈ St if and only if i ≤ |St|. A maximal chain Cσ is then defined
as Sσ

0 = ∅ and Sσ
i = {σ(1), σ(2), ..., σ(i)}, so Sσ

|St| = St. See Figure 4.2 (a) for an illustration.
Using this chain Cσ, a semigradient Hσ(S|St) is immediately obtained as

Hσ(S|St) = 〈hσ, S〉+R(∅) (4.18)

where each unary cost is given by

hσ(σ(i)) = R(Sσ
i )−R(Sσ

i−1). (4.19)

Figure 4.3 (a) illustrates how hσ(σ(i)) are computed. It can be easily shown that Hσ(Sσ
i |St) =

R(Sσ
i ) holds for any i, and a semigradient Hσ(Sσ

i |St) is thus a tight upper bound to R(S)
satisfying Equation (4.13). It also means that if the optimal solution S∗ happens to be among
the sets {Sσ

i }, then the minimization of Hσ(S|St) will find the optimal solution S∗. Also, since
R(S) is supermodular, hσ(σ(i)) ≤ hσ(σ(i+ 1)) holds for any i. Therefore, the best practice for
estimating permutations σ is to align the elements of Ω so that L(σ(i)) ≥ L(σ(i+ 1)) holds with
L(i) some likelihood of i being inside S∗.

SSP was first used for segmentation in [Rother et al., 2006], where theL1-distance consistencies
between histograms (i.e., Equation (4.5) with p = 1) were enforced by iteratively minimizing the
bounds Ê(S|St) = Hσ(S|St)+Q(S) for E(S). To estimate a permutation σ, they used a signed
distance map D(pi|St) from the border of the current segments St; so the pixel i that is most
inside the segments St comes at the first position: σ(1) = i. Their results showed that, however,
the schemes was ineffective and only used for making initial segments for their proposed method,
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(b) our method

Figure 4.2 Illustration of the chain and permutation. (a) SSP [Narasimhan and Bilmes, 2005] is a special
case of (b) our method. The use of our grouped permutation π makes piecewise-mean-approximation
bounds. See also Figure 4.3.

trust region graph cuts, based on gradient descents.

4.3.3 Relationship with Auxiliary Cuts

The authors of [Ayed et al., 2013] studied the Type-I of non-linear functions in Equation (4.4),
which can be re-written as a discrete form:

R(S) =
∑
z∈Z

fz(〈gz, S〉) =
∑
z∈Z

Fz(S) (4.20)

with Fz(S) = fz(〈gz, S〉) : 2Ω → R a supermodular function. Using the Jensen’s inequality and
assuming S ⊆ St they derived a general boundAα(S|St) for thisR(S), which can be equivalently
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Figure 4.3 Illustration of upper bounds for supermodular functions. The bounds in (a) SSP [Narasimhan
and Bilmes, 2005], (b) AC [Ayed et al., 2013], and (c) our method are shown, where the supermodular
function F (S) and its bounds are “intuitively” visualized by blue and red lines, respectively. The green
arrows in (a) show the unary costs h(σ(i)) of semidifferentials.
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expressed by the following form:

Aα(S|St) = Bshrink(S|St) + αR(St)

(
1− 〈1, S〉
〈1, St〉

)
≥ R(S) (4.21)

where α ≥ 0 and Bshrink(S|St) is given as

Bshrink(S|St) = R(St) +

〈∑
z∈Z

Fz(∅)− Fz(S
t)

〈gz, St〉
gz, S

t \ S

〉

=
∑
z∈Z

(
Fz(S

t) +
Fz(∅)− Fz(S

t)

〈gz, St〉
〈
gz, S

t \ S
〉)

=
∑
z∈Z

(
Fz(∅) +

Fz(S
t)− Fz(∅)
〈gz, St〉

〈gz, S〉
)
≥ R(S). (4.22)

Therefore, it can be seen that Bshrink(S|St) is the sum of the linear approximations of Fz(S)

drawn from Fz(∅) to Fz(S
t). Figure 4.3 (b) visualizes this linear approximation function shown

as the solid red line. Note that the infinite bound in Figure 4.3 (b) reflects the fact S ⊆ St and
the dashed line depicts the effect of the α-term in Equation (4.21). Although the function of this
α-term was not mentioned in [Ayed et al., 2013], it is used for preventing the optimization process
from over-shrinking the segments S, because the method [Ayed et al., 2013] can only successively
reduce the segments S and thus cannot recovery from over-shrinking during iterations.

Furthermore, we can derive another bound for R(S) similar to Bshrink(S|St) by applying the
same derivation to R̄(S) := R(Ω \ S) and substituting S ← Ω \ S, St ← Ω \ St, which results
after some simple calculations in

Bexpand(S|St) =
∑
z∈Z

(
Fz(S

t) +
Fz(Ω)− Fz(S

t)

〈gz,Ω \ St〉
〈
gz, S \ St

〉)
≥ R(S). (4.23)

Here, the auxiliary variable St is assumed to be St ⊆ S, so the iterative minimization of this
bound successively expands the segments S. Similarly to Bshrink(S|St), this bound can be seen
as the sum of the linear approximations of Fz(S) drawn from Fz(S

t) to Fz(Ω).
Now we can see an interesting relationship between the semidifferentials used in SSP [Narasimhan

and Bilmes, 2005; Rother et al., 2006] and the bound in [Ayed et al., 2013]. Namely, the bounds
Bshrink(S|St) and Bexpand(S|St) can be obtained as the mean approximations of semidifferen-
tials. To show this, let us denote the semidifferential of Fz(S) by Hσ

z (S|St) = 〈hσz , S〉+ Fz(∅)
where hσz (σ(i)) = Fz(S

σ
i ) − Fz(S

σ
i−1). We derive the mean approximation of Hσ

z (S|St) by
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dividing the domain Ω into St and S̄t := Ω \ St as follows:

Hmean(S|St) =
∑
z

[
Hσ

z (∅|St) +
Hσ

z (S
t|St)−Hσ

z (∅|St)

〈gz, St〉
〈
gz, S ∩ St

〉]
︸ ︷︷ ︸

mean approximation of Hσ
z (S|St) from Sσ

0 = ∅ to Sσ
|St| = St

+
∑
z

[
Hσ

z (S
t|St) +

Hσ
z (Ω|St)−Hσ

z (S
t|St)

〈gz,Ω \ St〉
〈
gz, S ∩ S̄t

〉]
︸ ︷︷ ︸

mean approximation of Hσ
z (S|St) from Sσ

|St| = St to Sσ
|Ω| = Ω

= Bshrink(S ∩ St|St) +Bexpand(S ∩ S̄t|St). (4.24)

Notably, the bounds of [Ayed et al., 2013] are obtained here by a completely different way than
using the Jensen’s inequality, without assuming S ⊆ St nor St ⊆ S. The derived function
Hmean(S|St) satisfies the tight bound conditions of Equation (4.13) (a proof is given in the next
section), and allows bidirectional optimization. However, when we use this bound, it is often the
case that only the first iteration successfully reduces the energy, and then the energy stays constant.

Still, the mean approximations are useful because they are independent of permutations σ. So,
when permutations σ are not reliable (e.g., when St = Ω at the initial iteration, St gives no clues
for estimating σ), the use of the mean approximations is reasonable. Based on these observations,
we in the next section propose a new bound that generalizes both of the semidifferentials in
SSP [Narasimhan and Bilmes, 2005; Rother et al., 2006] and the bounds in [Ayed et al., 2013].

4.4 Proposed Method

4.4.1 Bound for Type-I

Given the non-linear function R(S) in the form of Equation (4.4), we present our proposed bound
forR(S) by extending the semidifferentials in SSP [Narasimhan and Bilmes, 2005]. First, we define
a grouped permutation π by grouping ordered-elements in σ = {σ(1), σ(2), · · · , σ(|Ω|)} into
M (M ≤ |Ω|) groups: π(1), π(2), · · · , π(M) ⊆ Ω. Each group π(i) contains some consecutive
elements of σ: π(i) = {σ(j), σ(j + 1), · · · , σ(j + m)}, and groups are mutually disjoint:
π(i) ∩ π(j) = ∅ if i 6= j. More importantly, any group does not across σ(|St|) and σ(|St|+ 1),
thus there exists Sπ

j = St for some j. Using this grouped permutation π we define a maximal chain
Cπ: Sπ

0 = ∅ and Sπ
i = π(1) ∪ π(2) ∪ ... ∪ π(i). The grouped permutation and corresponding

chain are illustrated in Figure 4.2 (b). Then, our bound for R(S) is defined similarly to that of
SSP in Equation (4.18) as

Hπ(S|St) =
∑
z∈Z

Hπ
z (S|St) =

∑
z∈Z

[〈hπz , S〉+ Fz(∅)] (4.25)
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where unary costs hπz : Ω→ R are defined for each i ∈ π(j) as

hπz (i) = gz(i)
[
Fz(S

π
j )− Fz(S

π
j−1)

]
/ 〈gz, π(j)〉 . (4.26)

Essentially, Hπ
z (S|St) is a piecewise-mean-approximation of SSP’s bound Hσ(S|St), as visual-

ized in Figure 4.3 (c) using the example permutation given in Figure 4.2 (b).

Proposition: The function Hπ(S|St) satisfies the conditions of Equation (4.13) and is thus a
tight upper bound for R(S) in Equation (4.4).

Proof. To prove this, we show thatHπ
z (S|St) is an extreme point of ∂Fz(S

t). From the definitions
of π and Cπ, there exists Sπ

j such that Sπ
j = St. The condition of Equation (4.17) holds for

Hπ
z (S|St), since

Hπ
z (S

π
j |St)−Hπ

z (S
π
j−1|St) = 〈hπz , π(j)〉

= Fz(S
π
j )− Fz(S

π
j−1).

Note that our bound Hπ(S|St) becomes equivalent to Hσ(S|St) the semidifferentials in SSP,
if π(i) = {σ(i)}. Moreover, it also becomes equivalent to the full-mean-approximation bound
Hmean(S|St) in Equation (4.24), if π(1) = St and π(2) = Ω \ St.

The spirit behind this grouping and piecewise-mean-approximation scheme is that, when the
permutation of pixels σ(i) and σ(i+1) is expected to be unreliable, we put the two pixels into the
same group in order to treat them equally and leave a decision (i.e., whether which one is more
likely to be foreground) to other interactions, e.g., pairwise smoothness terms. How we make σ
and π is described in the next section.

4.4.2 Geodesic Distance for Deciding Permutations

In [Rother et al., 2006] permutations σ are made according to the signed distance from of the
border of the current segmentation St. Here, we propose a more sophisticated method for deciding
permutations by employing geodesic distance [Criminisi et al., 2008].

Below we summarize the geodesic distance transform technique proposed in [Criminisi et al.,
2008] and describe how we use it in our method. A unsigned geodesic distance from given
segments S is defined as

D(pi|S, I) = min
{pj |j∈S}

dG(pi, pj), (4.27)
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×

×

(a) segments (b) Euclidean dist. (c) Ds(pi|S, I)
(d) Ds(pi|S, I) for

noisy segments

(e) noisy segments (f) opening (g) closing (h) Ds
s(pi|S, I) for

noisy segments

Figure 4.4 Illustration of geodesic distance [Criminisi et al., 2008]. Given (a) an image and segments
(pink), the use of (c) geodesic distance Ds(pi|S, I) is more reasonable than (b) the Euclidean distance. But
(d) Ds(pi|S, I) is sensitive to (e) noisy speckles in segments. With the presence of (f) opening and (g)
closing effects, (h) Ds

s(pi|S, I) is robust to such speckles.

where dG(pi, pj) is a geodesic distance between two pixels pi, pj ∈ R2:

dG(pi, pj) = min
s∈P

|s|∑
k=2

√
‖ps(k) − ps(k−1)‖22 + γ2‖Ips(k) − Ips(k−1)

‖22. (4.28)

Here, P is the set of all paths joining pi and pj . Note that when γ = 0, the geodesic distance
dG(pi, pj) becomes equivalent to the Euclidean distance |pi − pj |. Using the unsigned distance
map, a signed geodesic distance from S is defined as

Ds(pi|S, I) = D(pi|S, I)−D(pi|S̄, I). (4.29)

On the one hand, using this signed geodesic distance for making permutations σ is reasonable. To
illustrate this, see the two pixels a and b in Figure 4.4 (a). Using the Euclidean distance shown in
Figure 4.4 (b), b has a shorter distance than a from S; hence, b is positioned before a in σ meaning
that b is more likely to be within the true segments S∗. By contrast, when we use the geodesic
distance shown in Figure 4.4 (c), it is likely that Ds(a|S, I) < Ds(b|S, I), so a will come before
b in σ reasonably.

On the other hand, as illustrated in Figure 4.4 (d), this distance is very sensitive to noise
speckles in S, i.e., small holes in foreground S and background S̄ such shown in Figure 4.4 (e).
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For this issue, the authors of [Criminisi et al., 2008] further introduce dilation and erosion for
segments S, which may be defined respectively as

Sd = {i ∈ Ω |Ds(pi|S, I) ≤ +θd}, (4.30)

Se = {i ∈ Ω |Ds(pi|S, I) ≤ −θe}, (4.31)

Then, opening and closing for S are defined respectively as

So = {i ∈ Ω |D(pi|Se, I) ≤ +θe}, (4.32)

Sc = {i ∈ Ω |D(pi|S̄d, I) > +θd}. (4.33)

The effects of opening and closing are illustrated in Figures 4.4 (f) and (g). Based on these
operations, a signed distance with opening and closing effects is given by

Ds
s(pi|S, I) = [D(pi|Se, I)− θe]−

[
D(pi|S̄d, I)− θd

]
. (4.34)

The effect of this distance is visualized in Figure 4.4 (h). The parameters θd and θe reflect the
maximum sizes of speckles in foreground S and background S̄, respectively. We use θd = θe = 5

and γ = 10/255.
Equipped with this signed distance the construction of the bound function Hπ(S|St) is as

follows. First, we compute this signed distance Ds
s(pi|St, I) for the current segments St. Second,

we make a permutation σ according to this distance such thatDs
s(pσ(i)|St, I) ≤ Ds

s(pσ(i+1)|St, I).
Finally, we make a grouped permutation π from σ. We process σ(i) from σ(2) to σ(|Ω|), and
put σ(i) into the same group with σ(i− 1) if Ds

s(pσ(i)|St, I)−Ds
s(pσ(i−1)|St, I) ≤ τ and not if

σ(i−1) ∈ St and σ(i) ∈ S̄t. See also the supplementary for the implementation details. Basically,
the size of a threshold τ reflects how much the permutation σ and so the distance Ds

s(pi|St, I) are
reliable. We empirically use a grouping threshold given by τ = a/t3 ≥ 0 (t = 1, 2, 3, ...) because
as iterations proceed the segments St are expected to be more accurate and so permutations σ by
the distance from St becomes accordingly more reasonable. Also, when St = Ω or St = ∅ at
the first iteration, so the distance from St cannot be defined, we set π(1) = Ω. This makes the
full linear approximations of Fz(S) drawn from Fz(∅) to Fz(Ω), which correspond to the bound
Bshrink(S|St) of [Ayed et al., 2013] and give reasonable approximations for the initial start-up.

4.4.3 Bound for Type-II

Following the derivation of [Ayed et al., 2013], we can derive a bound for the Type-II form of
R(S), with the tolerance of losing the bidirectionality. Since fz is a monotonically decreasing
function, a bound R̂(S) for R(S) may be derived using an auxiliary variable S ⊆ St as

R(S) =
∑
z∈Z

fz

(
〈gz, S〉
〈wz, S〉

)
≤

∑
z∈Z

fz

(
〈gz, S〉
〈wz, St〉

)
= R̂(S), (4.35)
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which is now the Type-I form of Equation (4.4). So we can further derive a boundHπ(S ⊆ St|St)

for R̂(S). The restriction S ⊆ St can be achieved by giving hard constraints to i ∈ Ω \ St. To
avoid over-shrinking, we append the α-term of Equation (4.21) to Hπ(S ⊆ St|St), and further
add the smoothness term Q(S) to make a overall bound Ê(S|St, α) for E(S).

4.5 Experimental Evaluations

We evaluate the performances of our method, SSP [Narasimhan and Bilmes, 2005; Rother et al.,
2006], and AC [Ayed et al., 2013], namely, by comparing the following four methods:

SC-GEO is the our proposed method described in Section 4.4.

SC-DIST uses the standard Euclidean distance (i.e., θe = θd = γ = 0) for making permutations
σ, but the other settings are the same with SC-GEO.

SSP-DIST is SSP [Narasimhan and Bilmes, 2005] implemented following the descriptions
in [Rother et al., 2006]. Basically, SSP-DIST is the same with SC-DIST but uses no mean
approximations. When S0 = Ω at the first iteration, a permutation σ is made randomly based on
10× 10-pixels of patches as described in [Rother et al., 2006].

AC is the method proposed in [Ayed et al., 2013], which uses the bound of Equation (4.21).

4.5.1 The GrabCut Benchmark Evaluations using L1 and L2-Distances

Similarly to [Ayed et al., 2013; Rother et al., 2006], we evaluate the performances of the four
methods using the GrabCut dataset [Rother et al., 2004]; given the target histogram of the ground
truth segmentation we compare the four methods using the L2 and L1-distance measures of
histograms. We use RGB-histograms of 1923 and 643 bins. We use the following form of
16-neighborhood smoothness term:

Q(S) = λ
∑

(i,j)∈N

max(exp(−β|Ipi − Ipj |2, ε)/|pi − pj | δ(χS(i)− χS(j)), (4.36)

where β = (2E[|Ipi − Ipj |2])−1 is computed via the expectation over the image. For {λ, ε}, we
use {1.0, 0.5} and {0.5, 0.5} for the L2 and L1-distances, respectively. St is trivially initialized
as S0 ← Ω but for SC-GEO and AC we also use the results of BJGC [Boykov and Jolly, 2001] as
S0 ← SBJ to show the useful properties of our method. For both SC-GEO and SC-DIST, we use
a grouping threshold τ = 300/t3 for L2 and τ = 10/t3 for L1. When using BJGC initialization,
so St is relatively accurate from the beginning, we use τ = 10/t3 for both L2 and L1. For AC, we
use α = 0.5.
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Tables 4.1 and 4.2 summarize the performances using the L2 and L1-distances, showing
average misclassified pixel rates and energy values of E(S) and R(S), and individual-image
comparisons with SC-GEO. Among the four methods, our proposed method SC-GEO outperforms
the others for all settings. Notably, SC-GEO shows about an order of magnitude greater accuracies
than AC [Ayed et al., 2013] beating for almost all individual images. Comparing the results of
SC-DIST and SSP-DIST with L2 and 643 bins, SC-DIST finds more accurate segmentations
in spite of the higher energies. This is because in SSP-DIST the appearance consistencies are
forced regardless of how permutations σ and corresponding bounds are accurate, resulting in
highly non-smooth, visibly bad local minimas. Figures 4.5 and 4.6 show the plots of the energy
value transitions E(St) using the L2 and L1-distances, where the energies E(St) are averaged
over the 50 images. As shown, SC-GEO achieves greater convergence than SSP-DIST and AC
in all settings. Also, the use of plausible initialization is effective for our method promoting
the convergence, but not much effective for AC. This is because AC can only find segments by
reducing the initial segments.

4.6 Application to Multiple Distribution Matching

4.6.1 Formulation

Multiple distribution matching problems were first addressed in [Taniai et al., 2012] particularly
for K = 2 with the Bhattacharyya coefficient. A notable point of their work is that they have
derived appropriate weights for the two distribution matching terms, by which the method becomes
significantly robust when using approximate input distributions. In this paper, we extend their
result and derive more general formulations assuming K ≥ 2 with the L1-distance as well as the
Bhattacharyya coefficient.

Multiple Bhatthacharyya Models

Let Pr(z|S) be the pixel feature distribution in segments S defined as

Pr(z|S) = 〈kz, S〉
〈1, S〉

, (4.37)

where kz : Ω→ R is some kernel function. We consider the following form of appearance term

R(DK) = −
K∑
i=1

∑
z∈Z

λi
√

Pr(z|Si)Hi(z) (4.38)

=

K∑
i=1

λiRi(Si|Hi) (4.39)
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Table 4.1 Evaluations on the GrabCut benchmark [Rother et al., 2004] usingL2-distance. We show average
error rates, E(S), R(S) over 50 images. The last column shows the number of images for which SC-GEO
outperforms. We compare our SC-GEO and SC-DIST with SSP-DIST [Rother et al., 2006] and AC [Ayed
et al., 2013]. We use 1923 and 643 bins, and two types of initialization (all-region and BJGC [Boykov and
Jolly, 2001]).

Method Init. Error (%) E(S) R(S) SC-GEO vs
(L2-distance) 1923 643 1923 643 1923 643 1923 643

Ground Truth - 0 0 3569 3569 0 0 - -
SC-GEO all 0.106 0.380 3538 4090 196 341 - -
SC-DIST all 0.141 1.017 4163 20347 610 12464 34 45
SSP-DIST all 0.402 2.566 4850 14060 349 874 33 50

AC all 1.256 3.278 20403 178151 15165 164191 50 50
SC-GEO BJGC 0.100 0.353 3506 3972 178 317 - -

AC BJGC 0.615 0.906 (5166) (20731) 2120 17598 50 50
ref. BJGC - 0.802 1.000 (5707) (21683) (2663) (18632) - -

Table 4.2 Evaluations on the GrabCut benchmark [Rother et al., 2004] usingL1-distance. We show average
error rates, E(S), R(S) over 50 images. The last column shows the number of images for which SC-GEO
outperforms. We compare our SC-GEO and SC-DIST with SSP-DIST [Rother et al., 2006] and AC [Ayed
et al., 2013]. We use 1923 and 643 bins, and two types of initialization (all-region and BJGC [Boykov and
Jolly, 2001]).

Method Init. Error (%) E(S) R(S) SC-GEO vs
(L1-distance) 1923 643 1923 643 1923 643 1923 643

Ground Truth - 0 0 1785 1785 0 0 - -
SC-GEO all 0.033 0.283 1790 1923 37 151 - -
SC-DIST all 0.039 0.307 1802 2009 58 257 42 37
SSP-DIST all 0.044 0.676 1807 2342 43 267 42 44

AC all 0.399 1.292 2620 4336 877 2475 50 49
SC-GEO BJGC 0.033 0.245 1790 1901 41 151 - -

AC BJGC 0.517 0.874 2603 3179 1006 1626 50 50
ref. BJGC - 0.802 1.000 (3134) (3434) (1612) (1908) - -
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Figure 4.5 Energy convergence comparisons using the L2-distance with 1923 and 643 bins. The energy
function values E(S) w.r.t. the number of min-cuts (i.e. iterations) are shown. Our method (SC-GEO)
significantly outperforms both AC [Ayed et al., 2013] and SSP-DIST [Narasimhan and Bilmes, 2005; Rother
et al., 2006]. The use of plausible initialization (BJ) is effective and promotes the convergence of our
method but not for AC [Ayed et al., 2013].
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Figure 4.6 Energy convergence comparisons using the L1-distance with 1923 and 643 bins. The energy
function values E(S) w.r.t. the number of min-cuts (i.e. iterations) are shown. Our method (SC-GEO)
significantly outperforms both AC [Ayed et al., 2013] and SSP-DIST [Narasimhan and Bilmes, 2005; Rother
et al., 2006]. The use of plausible initialization (BJ) is effective and promotes the convergence of our
method but not for AC [Ayed et al., 2013].
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whereHi(z) := Pr(z|Oi) is a priori known probability distribution for the i-th object Oi. Follow-
ing the derivation of [Taniai et al., 2012] we derive the weights λi via matching of entire image
distributions.

Let HΩ(z) := Pr(z|Ω) be the distribution in the entire image region. We approximately
expressHΩ(z) by the sum of input distributions as

H̃Ω(z|η) =
K∑
i=1

ηiHi(z), (4.40)

where ηi ≥ 0 and
∑

i ηi = 1. Then, we define the Bhattacharyya coefficient betweenHΩ(z) and
H̃Ω(z|η):

RΩ(η) = −
∑
z∈Z

√
HΩ(z)H̃Ω(z|η) (4.41)

This function RΩ(η) can be shown to be convex, therefore its minimizer

η∗ = arg minRΩ(η) (4.42)

can be obtained by e.g. gradient descents. Here, η∗i represents an estimate for the ratio of the
object-i’s region size to the image size |S∗

i |/|Ω|. When input distributions are given as the true
distributions, η∗i = |S∗

i |/|Ω| as well asHΩ(z) = H̃Ω(z|η∗) holds.
On the other hand, an upper bound for RΩ(η

∗) can be derived as

RΩ(η
∗) ≤

K∑
i=1

√
η∗i
〈1, Si〉
|Ω|

Ri(Si|Hi) (4.43)

= −
K∑
i=1

√
η∗i

1

|Ω|
∑
z∈Z

√
〈kz, Si〉Hi(z) (4.44)

which holds equal if η∗i = |S∗
i |/|Ω| and Pr(z|Si) = Hi(z). Equation (4.43) means that the energy

RΩ(η
∗) that measures the similarity between true and approximate entire-image-distributions

is closely connected with the energy that measures similarities between individual model dis-
tributions Pr(z|Si) and Hi(z). Therefore, we use the right-hand side of Equation (4.43) as the
appearance term for multi-model segmentation. But because the term is bounded in [−1, 0], we
use a |Ω|-factored term to account for the balance with Q(DK):

R(DK) = −
K∑
i=1

√
η∗i |Ω|

∑
z∈Z

√
〈kz, Si〉Hi(z) (4.45)

Seeing Equation (4.43) the physical meaning for the weights of Ri(Si|Hi) obtained here
is very intuitive and reasonable; namely, each matching term Ri(Si|Hi) should be weighted
by the geometric mean of area size ratios computed by two ways, i.e., from prior distributions
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and from resulting segments. Also, from Equation (4.44), the normalization terms 〈1, Si〉 in
Pr(z|Si) are canceled and each matching term becomes the Type-I form of Equation (4.4). This
formulation allows us to use bidirectional optimization and thus allows the use of expansion and
swap algorithms.

Multiple L1-Distance Models

Similarly to the case of the Bhattacharyya measures, we can derive multiple distribution matching
models for L1-distance:

R(DK) =
K∑
i=1

Ri(Si|Hi) (4.46)

=

K∑
i=1

∑
z∈Z
|〈kz, Si〉 − η∗i |Ω|Hi(z)| , (4.47)

where η∗i are defined as the minimizer of the L1-distance betweenHΩ(z) and H̃Ω(z|η), just like
the case of the Bhattacharyya models.

4.6.2 Expansion and Swap Algorithms

For K = 2, the appearance term R(D2) = R1(S1|H1) + R2(S2|H2) can be expressed by
R(S) = R1(S|H1) +R2(Ω \S|H2), which is essentially binary segmentation problems and thus
our SC-GEO algorithm can be directly applied.

For K > 2, we use well-known α-expansion and αβ-swap algorithms [Boykov et al., 2001].
The application of expansion and swap algorithms is straightforward. In each α/αβ-move we
iteratively minimize the bounds of the move energies, which is achieved as a direct extension of the
SC-GEO algorithm. In α-expansion, since we expand the region Si=α and shrink the others, we
set terminal-edge costs as t(i)← hπ(i|l = α) and source-edge costs as s(i)← hπ(i ∈ St

k|l = k),
where hπ(i|l) is unary costs of the object-l’s bound Hπ(Sl|St

l , l). In αβ-swap, since two regions
Si=α and Si=β can exchange their pixels while the others are fixed, we set terminal-edge costs as
t(i)← hπ(i|l = α) and source-edge costs as s(i)← hπ(i|l = β) for i ∈ Sα ∪ Sβ . Also, when
computing Hπ(Sl|St

l , l), l = α, β, we set a sufficiently large value dmax to Ds
s(pi|St

l , I) where
i ∈ Ω \ (St

α ∪ St
β), because such pixels i are never labeled as α nor β.

Notice that the bidirectionality of optimization is essential here to use expansion and swap
algorithms because they contain both two (shrink and expand) directions of optimization in each
move.

4.6.3 Results

We first compare our method with [Taniai et al., 2012] using the Battacharyya measures with
K = 2. We can directly use the proposed SIC-GEO method described in Section 4.4. We use the
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smoothness term and parameters specified in [Taniai et al., 2012] and true distributions learned
from ground truth. Since the algorithm of [Taniai et al., 2012] internally uses BJGC’s results in
optimization, we also use them as the initial segments. Table 4.3 shows performance comparisons
on the GrabCut benchmark. Our method achieves greater accuracy in smaller numbers of min-cut
operations.

Since the bound used in [Taniai et al., 2012] is essentially the same with that of AC [Ayed
et al., 2013], the method [Taniai et al., 2012] uses two auxiliary labels St

F and St
B for foreground

and background terms, and alternately optimize the two terms, which makes their optimization
procedure complicated. The bidirectinal optimization of our method leads to a much simplified
and straightforward procedure.

To evaluate the performance for general K > 2 cases, we use six images from the BSDS500
dataset [Arbelaez et al., 2011]. We use the smoothness term of Equation (4.36) and set λ = ε = 0.5,
τ = 300/t3 for the L1-distance model, but λ = 0.1 for the Bhattacharyya model. The other
parameters are set to the default. We also compare with the BJ model [Boykov and Jolly, 2001],
for which we use λ = 4 and ε = 0.4. We use 1283 bins, and distributions as well as area-size rates
η∗i are learned from ground truth.

Table 4.4 shows the error rates of the six images using the three models with expansion and
swap algorithms. All of our methods significantly outperform the BJ method. In Figures 4.7–4.12
we show the results for the six images, respectively. Our methods work quite well even for difficult
camouflage scenes and thin structures. See also the supplementary for the complete results.

Table 4.3 Evaluations on the GrabCut benchmark [Rother et al., 2004] using a dual Bhattacharyya
model [Taniai et al., 2012]. We show error rates and the number of min-cuts averaged over 50 images.

Method Error (%) #min-cuts
1923 643 1923 643

SC-GEO 0.023 0.212 3.7+1 6.3+1
DDM [Taniai et al., 2012] 0.213 0.545 10.6+1 10.8+1

ref. BJGC [Boykov and Jolly, 2001] 0.802 1.000 1 1

Table 4.4 Evaluations of multiple distribution matching. Error rates (%) for six images in the BSDS500
dataset are shown. We use 1283 bins, and true histograms learned from ground truth. We compare our four
methods with the BJ model [Boykov and Jolly, 2001].

Model Algorithm 24077 41025 87046 106024 299086 335088 Average
L1-distance expansion 1.88 1.20 0.40 0.13 0.26 0.42 0.72
L1-distance swap 1.77 1.08 0.30 0.11 0.26 0.31 0.64

Bhattacharyya expansion 1.70 1.00 0.50 0.13 0.24 0.39 0.66
Bhattacharyya swap 1.89 0.58 0.33 0.12 0.24 0.46 0.60

BJ model expansion 6.85 3.69 2.72 2.13 1.39 2.34 3.19
BJ model swap 6.85 3.62 2.72 2.16 1.39 2.37 3.19
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24077 ground truth (K = 5)

L1-distance (expansion)
ε = 1.88%

L1-distance (swap)
ε = 1.77%

Bhattacharyya (expansion)
ε = 1.70%

Bhattacharyya (swap)
ε = 1.89%

Boykov and Jolly [2001] (expansion)
ε = 6.85%

Boykov and Jolly [2001] (swap)
ε = 6.85%

Figure 4.7 Results of multiple distribution matching for “24077”. We show the results of four proposed
methods and the results using the BJ model [Boykov and Jolly, 2001].
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41025 ground truth (K = 3)

L1-distance (expansion)
ε = 1.20%

L1-distance (swap)
ε = 1.08%

Bhattacharyya (expansion)
ε = 1.00%

Bhattacharyya (swap)
ε = 0.58%

Boykov and Jolly [2001] (expansion)
ε = 3.69%

Boykov and Jolly [2001] (swap)
ε = 3.62%

Figure 4.8 Results of multiple distribution matching for “41025”. We show the results of four proposed
methods and the results using the BJ model [Boykov and Jolly, 2001].
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87046 ground truth (K = 3)

L1-distance (expansion)
ε = 0.40%

L1-distance (swap)
ε = 0.40%

Bhattacharyya (expansion)
ε = 0.50%

Bhattacharyya (swap)
ε = 0.33%

Boykov and Jolly [2001] (expansion)
ε = 2.72%

Boykov and Jolly [2001] (swap)
ε = 2.72%

Figure 4.9 Results of multiple distribution matching for “87046”. We show the results of four proposed
methods and the results using the BJ model [Boykov and Jolly, 2001].

85



4.6. APPLICATION TO MULTIPLE DISTRIBUTION MATCHING

106024 ground truth (K = 3)

L1-distance (expansion)
ε = 0.13%

L1-distance (swap)
ε = 0.11%

Bhattacharyya (expansion)
ε = 0.13%

Bhattacharyya (swap)
ε = 0.12%

Boykov and Jolly [2001] (expansion)
ε = 2.13%

Boykov and Jolly [2001] (swap)
ε = 2.16%

Figure 4.10 Results of multiple distribution matching for “106024”. We show the results of four proposed
methods and the results using the BJ model [Boykov and Jolly, 2001].
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299086 ground truth (K = 5)

L1-distance (expansion)
ε = 0.26%

L1-distance (swap)
ε = 0.26%

Bhattacharyya (expansion)
ε = 0.24%

Bhattacharyya (swap)
ε = 0.24%

Boykov and Jolly [2001] (expansion)
ε = 1.39%

Boykov and Jolly [2001] (swap)
ε = 1.39%

Figure 4.11 Results of multiple distribution matching for “299086”. We show the results of four proposed
methods and the results using the BJ model [Boykov and Jolly, 2001].
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335088 ground truth (K = 4)

L1-distance (expansion)
ε = 0.42%

L1-distance (swap)
ε = 0.31%

Bhattacharyya (expansion)
ε = 0.39%

Bhattacharyya (swap)
ε = 0.46%

Boykov and Jolly [2001] (expansion)
ε = 2.34%

Boykov and Jolly [2001] (swap)
ε = 2.37%

Figure 4.12 Results of multiple distribution matching for “335088”. We show the results of four proposed
methods and the results using the BJ model [Boykov and Jolly, 2001].
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4.7 Application to One-Cut Segmentation

One of the major drawbacks of distribution matching approaches is expensive computational
costs; they are usually thought to require many min-cut operations to obtain approximate solutions.
Contrary to such thoughts, we show here that our method can produce approximate solutions in
only a single min-cut. To achieve this, we assume that sparse user-scribbles annotating foreground
and background are additionally given. See Figure 4.13 for examples of such user-scribbles. The
use of such information is very reasonable and common in interactive segmentation [Boykov and
Jolly, 2001; Price et al., 2010; Bai and Sapiro, 2007].

4.7.1 Geodesic Distance for User-Scribbles

The method presented here is essentially the same with the one described in Section 4.4. The
only difference is the definition of geodesic distance, for which we use another type of geodesic
distance used in [Bai and Sapiro, 2007; Price et al., 2010] that is suitable for sparse user-scribbles.

Let ΩF ,ΩB ⊂ Ω be user-scribbled pixels annotating foreground and background (i.e., red and
blue pixels in Figure 4.13), respectively. Following [Bai and Sapiro, 2007; Price et al., 2010] we
define a new geodesic distance from scribbles ΩF or ΩB as

Dl(pi|Ωl, I) = min
{pj |j∈Ωl}

dl(pi, pj), (l = F ,B), (4.48)

where a geodesic distance dl(pi, pj) between two pixels pi, pj is defined as

dl(pi, pj) = min
s∈P

|s|∑
k=2

|Pl(Ips(k))− Pl(Ips(k−1)
)|, (l = F ,B). (4.49)

Here, P is the set of all paths joining pi and pj , and Pl(z) is defined as

Pl(z) =
Pr(z|l)

Pr(z|F) + Pr(z|B)
, (l = F ,B). (4.50)

Intuitively, the distance Dl(pi|Ωl, I) represents some (dis-)likelihoods spatially propagated from
scribbles Ωl. By measuring the distance using the gradients of the relative probability distribution
Pl(Ip) rather than intensities Ip themselves, it becomes robust to textures and noises. Like [Price
et al., 2010], we further define a relative foreground/background geodesic distance by normalizing
DF (pi|Ωl, I) and DB(pi|Ωl, I) as

D(pi|ΩF ,ΩB, I) =
DF (pi|Ωl, I)

DF (pi|Ωl, I) +DB(pi|Ωl, I)
. (4.51)

Essentially, its negative form D̄(pi|ΩF ,ΩF , I) = 1−D(pi|ΩF ,ΩF , I) represents likelihoods of
pixels pi being foreground as visualized in Figure 4.13.
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4.7. APPLICATION TO ONE-CUT SEGMENTATION

In our one-cut segmentation, in stead of usingDs
s(pi|S, I) in Equation (4.34), we useD(pi|ΩF ,ΩB, I)

for making a permutation σ. Then, we make a grouped permutation π from σ by using a threshold
τ = 10−8. Our one-cut segmentation is then achieved by performing a single min-cut for a bound
Hπ(S|S0 = Ω) +Q(S).

4.7.2 Results

We evaluate our one-cut segmentation method using the GrabCut dataset [Rother et al., 2004]
and user-scribbles provided in [Gulshan et al., 2010]. To assess the pure performance of the
proposed optimization scheme, we use no hard constraints for scribble pixels ΩF , ΩB, and we use
histograms learned from ground truth. The smoothness term and its parameters are the same with
the default settings specified in Section 4.5.1.

Table 4.5 summarizes the performance of our method using L1 and L2-distance measures,
showing approximate solutions are indeed obtained in one min-cut. In Figure 4.13, we show some
example results of our one-cut method (SC-OneCut) with the corresponding results of geodesic
segmentation [Bai and Sapiro, 2007], which are obtained by thresholding the geodesic distance
map D(pi|ΩF ,ΩF , I) using a threshold 0.5. Seeing the results of the “scissor” and “swimmer”
examples, geodesic segmentation [Bai and Sapiro, 2007] cannot correctly label isolated regions
because likelihoods cannot be propagated from the scribbles to the isolated regions. By contrast,
our method uses the geodesic distance likelihoods only for making permutations σ, π and for
constructing an appropriate bound function, thus it is robust to such issues. We further compare
the performances of our method described in Section 4.4 (SC-GEO) and this one-cut method. In
Figures 4.14–4.17, we show the segmentation results and the plots of the energy function values
E(S) of SC-OneCut and SC-GEO for some difficult “camouflage” examples. As shown, SC-GEO
finds very accurate solutions, but the convergence is sometimes slow for such camouflage images.
In spite of such difficulties, SC-OneCut can find good approximate solutions in one min-cut and
even outperforms SC-GEO in the “grave” example.

Table 4.5 Evaluations of the proposed one-cut segmentation on the GrabCut benchmark [Rother et al.,
2004]. We show average error rates, E(S), andR(S) over 50 images. Our method yields good approximate
solutions in only a single min-cut.

Model Error (%) E(S) R(S)
1923 643 1923 643 1923 643

L1-distance 0.127 0.585 1959 2460 201 673
L2-distance 0.211 0.711 3909 6047 412 1383
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(a) scribbles (b) geodesic distance (c) SC-OneCut
(proposed)

(d) geodesic
segmentation

Figure 4.13 Example results of our one-cut segmentation. From left to right, we show (a) images with
user-scribbles provided in [Gulshan et al., 2010], (b) geodesic distance, (c) results of our method, and (d)
geodesic segmentation [Bai and Sapiro, 2007]. The distance is visualized as likelihood forms. The results
of method [Bai and Sapiro, 2007] are obtained by thresholding the distance maps.
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Figure 4.14 Energy convergence comparison of SC-OneCut and SC-GEO (1). We show the results of a
difficult camouflage example “grave”. The proposed SC-OneCut finds a good approximate solution in only
one min-cut.
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Figure 4.15 Energy convergence comparison of SC-OneCut and SC-GEO (2). We show the results of a
difficult camouflage example “209070”. The proposed SC-OneCut finds a good approximate solution in
only one min-cut.
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Figure 4.16 Energy convergence comparison of SC-OneCut and SC-GEO (3). We show the results of a
difficult camouflage example “65019”. The proposed SC-OneCut finds a good approximate solution in
only one min-cut.
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Figure 4.17 Energy convergence comparison of SC-OneCut and SC-GEO (4). We show the results of a
difficult camouflage example “memorial”. The proposed SC-OneCut finds a good approximate solution in
only one min-cut.
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4.8 Conclusions

4.8.1 Summary

In this work, we proposed an efficient optimization method that can be used for a variety fo non-
linear higher-order terms. The proposed method was presented as an extension of SSP [Narasimhan
and Bilmes, 2005] and AC [Ayed et al., 2013], by pointing out their close connection. Unlike [Ayed
et al., 2013], our method allows bidirectional optimization and achieved greater accuracy and
convergence than both methods. The bidirectionality was the key factor for the application to
multiple-model segmentation problems. Also, we showed that the method can find good approx-
imate solutions in only a single min-cut, given sparse user-scribbles are provided, which is a
common situation in interactive segmentation. We hope that this work stimulate researchers in
this field and promote the use of such non-linear terms, which are now shown to be efficiently
optimized.

4.8.2 Future Directions

We discuss the current limitations and potential applications of our method, and present the future
directions of this work.

Grouping Scheme

The thresholding scheme for making grouped permutations works well but somewhat ad-hoc. The
value of the threshold τ should reflect the quality of the current segments, therefore an adaptive
thresholding scheme based on the value of e.g. current energy function values E(St) may be
possible.

Other Move Making Methods

We used expansion and swap algorithms for multi-model distribution problems but we can use other
generalized move making schemes such as α-expansion β-shrink moves [Schmidt and Alahari,
2011] and contraction moves [Woodford et al., 2012], by which the method may achieve even
greater convergence.

Video Segmentation

We believe that our bidirectional optimization is advantageous in video segmentation, because the
object regions between neighboring frames are similar so we can use the results of the previous
frames as the initial segmentations. But we leave this as our future work.

94



5
Conclusion

5.1 Summary of This Thesis

We studied energy minimization of continuous pairwise MRFs and discrete higher-order MRFs
using GC.

For the first type of MRFs, we proposed an efficient inference method for accurate stereo vision.
In spite of the huge solution value space, the proposed method efficiently finds good approximate
solutions by incorporating spatial propagation techniques into GC based MRF optimization. The
prosed method was designed for taking advantage of intrinsic properties of GC, and at the same
time it was carefully tailored for the specifics of considered applications, i.e., piecewise linearity of
scenes. The proposed method was evaluated using the Middlebury stereo benchmark [Scharstein
and Szeliski, 2001] and achieved the state-of-the-art performance among more than 150 stereo
algorithms.

For the second type of MRFs, we proposed an efficient and general optimization method for
various kinds of non-linear functions. The proposed method was presented as a generalization of
two approaches [Ayed et al., 2013; Narasimhan and Bilmes, 2005], and achieved about an order
of magnitude greater accuracy than the current state-of-the-art method [Ayed et al., 2013]. The
proposed method was further applied to multiple distribution matching problems, which is the first
work that addresses general multiple distribution matching problems. Furthermore, we showed
that the proposed method can yield approximate solutions to higher-order MRF energies in only a
single minimum cut, given sparse user-scribbles are provided.

5.2 Future Directions

Continuous MRF Optimization for Other Applications

We believe that our optimization strategy presented in Chapter 3 is not limited to the current
binocular stereo matching problems but can be applied for more general corresponding field
estimation such as multi-view stereo and optical flow. For multi-view stereo problems, the
treatment of visibility and occlusion issues becomes more important. On the other hand, optical
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5.2. FUTURE DIRECTIONS

flow is a problem of estimating dense motions between two frames of a video sequence, where each
pixel is assigned a 2D label of horizontal and vertical disparities. When motions or displacements
are small, classical continuous optimization approaches are effective. For large displacement
optical flow problems, discrete optimization approaches have been gathering attention [Xu et al.,
2012; Lempitsky et al., 2008], where non-convex energies are first optimized by discrete optimizers
to be further refined by convex optimizers. By using our method, it may be possible to estimate
highly complex, per-pixel affine flow models for achieving accurate optical flow.

Higher-Order Terms for Continuous MRFs

The use of higher-order terms is currently limited to discrete MRF formulations. However, we
may be able to optimize continuous higher-order terms by extending our discrete optimization
method, just similarly to the discrete-continuous optimization approach presented in Chapter 3. In
matting problems, for example, a continuous alpha value is estimated for each pixel, which can be
seen as a generalized problem of binary segmentation. Therefore, the use of higher-order terms is
expected to be effective for such matting problems as well.
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A
Incorporating Spatial Information into

Distribution Matching Approaches

Abstract We present an accurate image segmentation method that divides an image region
into foreground and background regions. Our method is based on global distribution matching
approaches, which seek segmentation by maximizing similarity between input color distributions
and distributions computed from resulting segmented regions. Unlike previous distribution match-
ing methods, we propose to additionally use pixel’s coordinate information by augmenting pixel
features from (R,G,B) to (R,G,B,X,Y) vectors, and we formulate our segmentation method as
distribution matching using 5D histograms. To increase the robustness to the spatial kernel size of
the histograms, we formulate our method as the weighted sum of multiple distribution matching
terms with different spatial kernel sizes, where the weight of each matching term is adaptively
estimated. The proposed technique can be used in a variety of existing distribution matching
methods. In this paper the technique is combined with a recently proposed robust distribution
matching method, by which the method yields even greater accuracy and robustness as we show in
the experiments.

A.1 Introduction

This paper addresses the problem of binary image segmentation when approximate color and
spatial information of foreground and background regions are given as input. We can obtain
such information e.g. from previous frames when successively processing video sequences. Such
problems are often formulated as energy minimization of binary-labeling Markov random fields
(MRFs) [Geman and Geman, 1984; Boykov and Jolly, 2001; Rother et al., 2004; Liu et al., 2009;
Price et al., 2010; Rother et al., 2006; Ayed et al., 2010; Pham et al., 2011; Taniai et al., 2012; Ayed
et al., 2013; Gorelick et al., 2013]. In this approach the energy function is usually composed of two
terms: the data term for measuring appearance consistencies between resulting segmentation and
observed data (e.g. input color information of foreground and background), and the smoothness
term for enforcing spatial smoothness on resulting segmentation.
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(a) Spatial quantization of 4×4-grids (b) RGB distribution (c) RGBXY distribution

Figure A.1 The concept of 5D distributions. Pixel distributions of the foreground region of an image in (a)
are shown in (b) and (c). Usually distribution matching methods use (b) RGB distributions with no spatial
information. We propose to use (c) RGBXY distributions for exploiting spatial information in distribution
matching approaches, where the spatial domain of RGBXY distributions is quantized, e.g., using 4×4-grids
shown in (a).

Using color similarity is the typical way to measure appearance consistencies, and such
approaches can be categorized into two types: local measures and global measures. The local
measures define likelihood of each pixel individually based on each pixel’s color feature. This
simple formulation is widely adopted [Boykov and Jolly, 2001; Rother et al., 2004; Bai et al., 2009;
Liu et al., 2009; Price et al., 2010] because such energy functions can be optimally minimized by
using graph cuts [Kolmogorov and Zabin, 2004; Boykov and Kolmogorov, 2004] if only pairwise
smoothness terms are submodular. However, the optimal solutions of local measure methods
often show visibly incorrect results, because they are strongly biased toward shorter boundary
lengths (a.k.a shortcutting or shrinking bias) [Price et al., 2010]. Recently the global measures
have been gathering attention in computer vision [Rother et al., 2006; Ayed et al., 2010; Pham
et al., 2011; Taniai et al., 2012; Ayed et al., 2013; Gorelick et al., 2013] because they have been
shown to achieve greater accuracy and overcome the limitations of local measures. The global
measures directly evaluate similarity between input distributions of pixel features and distributions
computed from resulting segmented regions. Although this type of inference is NP-hard, it has
been shown that approximate solutions can be efficiently estimated by iteratively applying graph
cuts to some bound functions [Ayed et al., 2010; Pham et al., 2011; Taniai et al., 2012; Ayed
et al., 2013] or to first-order approximation functions [Rother et al., 2006; Gorelick et al., 2013].
A recent work [Taniai et al., 2012] has shown that the robustness of global measures can be
significantly increased via dual distribution matching that simultaneously enforces consistencies
between resulting segmentation and two (foreground and background) input distributions.

The use of spatial information, on the other hand, is widely studied in the context of local
measure methods. For example, user’s scribbles are used as hard constrains in interactive seg-
mentation [Boykov and Jolly, 2001] and, furthermore, likelihood is spatially propagated from the
scribbles in geodesic segmentation [Price et al., 2010]. In video segmentation, motions are used
in [Pham et al., 2010; Bai et al., 2009]. Although these works suggest the effectiveness of the
use of spatial information for segmentation, the distribution matching approaches seem so far not
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aware of spatial information.
In this paper, we develop a method for exploiting pixel’s spatial information in global dis-

tribution matching approaches. The key idea of our method is to augment pixel features from
(R,G,B) to 5D vectors of (R,G,B,X,Y), and we formulate our method as distribution matching
using 5D histograms (see Figure A.1). To increase the robustness to the spatial kernel size of
histograms, our method is formulated as the weighted sum of multiple distribution matching
terms using different kernel sizes with adaptively estimated weights. The use of this formulation
has several benefits: it can be easily combined with previously proposed distribution matching
methods [Rother et al., 2006; Ayed et al., 2010; Pham et al., 2011; Taniai et al., 2012; Ayed et al.,
2013; Gorelick et al., 2013]. Particularly we use a recently proposed dual distribution matching
method [Taniai et al., 2012] as our baseline, which seems much more robust and accurate than
single distribution matching methods [Rother et al., 2006; Ayed et al., 2010; Pham et al., 2011;
Ayed et al., 2013; Gorelick et al., 2013]; it uses input spatial information as soft constraints, by
which the method is robust to large motions or dynamic scene changes in video segmentation; it
does not require motion tracking or optical flow, which is often computationally expensive.

A.2 Related Works

Spatial information is actively exploited in interactive segmentation, where a user specifies seg-
mentation clues by scribbling foreground and background regions or giving a bounding box to the
foreground region.

A typical example that uses user’s scribbles is the interactive graph cuts proposed by Boykov
and Jolly [Boykov and Jolly, 2001]. The method first learns color distributions of foreground and
background from scribbled pixels and imposes hard constraints on those pixels as seeds. This is
also the pioneer work that uses graph cuts for image segmentation. A similar method is proposed
in [Liu et al., 2009]. Recently Price et al. [Price et al., 2010] proposes to use the geodesic distance
in interactive segmentation, where likelihood of being foreground and background is spatially
propagated from hard-constrained scribbled pixels using a geodesic metric.

GrabCut by Rother et al. [Rother et al., 2004] proposes to use a bounding box for interactive
segmentation. In this method, initial color distributions of foreground and background are learned
from the inside and outside of the bounding box using GMMs, and the outside pixels are hard
labeled as background. Lempitsky et al. [Lempitsky et al., 2009] proposes a bounding box prior
which exploits an assumption that the foreground region is tightly enclosed by the bounding box.

All of these methods described above require user’s inputs and treat them as hard constraints.
However, the use of hard constraints is sometimes disadvantageous. For example when processing
a video sequence, using the spatial information of objects learned from the previous frames as
hard constraints may cause inevitable errors due to large motions or dynamic scene changes. Our
method uses the spatial information rather as soft constraints.

In the context of video segmentation, shape priors [Freedman and Zhang, 2005] are often
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used, which enforce segmentation boundaries happen near the boundaries of a shape template
(e.g. the segmentation results of previous frames) by setting higher smoothness costs w.r.t. the
distance from the template’s boundaries. As we will see in the experiments, this method is less
robust to dynamic scene changes compared with our method. Bai et al. [Bai et al., 2009] proposes
localized classifiers, which perform graph-cut segmentation in small overlapping windows along
pre-estimated boundaries, where color distributions are learned in each local window. The idea of
the localized color models is similar to our RGBXY histograms in spirit. However, the method [Bai
et al., 2009] requires relatively accurate initial segmentation. In fact, it uses SIFT feature matching
and optical flow for propagating the segmentation results of the previous frames in order to obtain
accurate initial segmentation.

To summarize, the use of spatial information is popular in local measure methods, particularly
in interactive segmentation, but much less used in global measure approaches. Since our method
takes advantage of good performance of global measures, it performs quite well without using any
hard constrained pixels or expensive motion tracking.

A.3 Proposed Method

A.3.1 Review of Dual Distribution Matching

Before presenting our method, we briefly review a dual distribution matching method (or DDM)
proposed in [Taniai et al., 2012], which we use as our baseline method. Let us consider a problem
of finding a binary-labeling function L that assigns the foreground F or background B label to
the set of all pixels P ⊂ Z2 as Lp = L(p) : P → {F,B}. Let PL

l : Z → [0, 1] (l = F,B) be
the distribution (histogram) of pixel features Ip ∈ Z computed from the foreground (l = F ) or
background (l = B) region of the segmentation L. The distribution PL

l is normalized so that it
sums up to 1.

We assume approximate distributions of foreground and background regionsHF ' PL∗
F and

HB ' PL∗
B are given as input. Using only this information, we estimate the true segmentation L∗

by minimizing the following energy function:

E(L|HF ,HB) = λFMF (L|HF )︸ ︷︷ ︸
foreground matching

+ λBMB(L|HB)︸ ︷︷ ︸
background matching

+ S(L)︸ ︷︷ ︸
smoothness

(A.1)

Here, the matching termsMl(L|Hl) are formulated as the dissimilarity between the resulting and
input distributions:

Ml(L|Hl) = −B
(
PL
l ,Hl

)
(l = F,B) (A.2)

and we use the Bhattacharyya coefficient [Bhattacharyya, 1943; Aherne et al., 1998] for the
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similarity measure B(, ) that is defined and bounded as

B(f, g) =
∑
z∈Z

√
f(z)g(z) ∈ [0, 1]. (A.3)

S(L) is the smoothness term defined as

S(L) = λ
∑

(p,q)∈N

δLp 6=Lq

|p− q|

(
1

1 + |Ip − Iq|2
+ ε

)
. (A.4)

Here, N is the set of 8-neighbor pixel pairs, δtrue = 1, δfalse = 0, Ip ∈ R3 is a color vector of a
pixel p, and λ and ε are user-defined parameters. The physical meaning of this energy function
E(L|HF ,HB) is to simultaneously enforce the resulting distributions PL

F and PL
B get close to

input distributionsHF andHB , respectively.
It has been shown in [Taniai et al., 2012] that the optimal weights of the two matching terms

λF and λB can be estimated as

λF =
√
ηF rLF , λB =

√
ηB rLB. (A.5)

Here, ηF ∈ [0, 1] (ηB=1−ηF ) is the rate of the foreground (background) region size w.r.t. the
entire image size estimated via matching entire image distributions as

ηF = argminMΩ(η|HF ,HB) (A.6)

where
MΩ(η|HF ,HB) = −B

(
HΩ, H̃Ω(η)

)
. (A.7)

Here,HΩ is the distribution of the entire image region, and H̃Ω is its approximation by the sum of
input distributions H̃Ω(η) = ηHF + (1 − η)HB . The minimization of Equation (A.6) can be
easily obtained because the functionMΩ(η|HF ,HB) is convex and the only variable η is limited
in [0, 1]. The value rLF (or rLB) in Equation (A.5) is the rate of foreground (background) region
size w.r.t. the entire image size computed from segmentation L. An intuitive interpretation of the
weights of Equation (A.5) is that each matching termMl(L|Hl) (l = F,B) is weighted by the
geometric-mean of region size rates computed by the two ways (i.e. from the input distributions
or from the output segmentation).

The minimum solution of E(L|HF ,HB) is estimated by iteratively minimizing the upper-
bound functions of E(L|HF ,HB) using graph cuts. Please refer to [Taniai et al., 2012] for the
detailed optimization procedure.
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A.3.2 Formulation

We present our segmentation method by borrowing the framework of a robust distribution
matching method, DDM [Taniai et al., 2012]. Unlike DDM [Taniai et al., 2012] and other
previous distribution matching methods that use 3D vectors of (R,G,B) as pixel features, we
use 5D vectors of (R,G,B,X,Y) for taking advantage of spatial information. Specifically, the
pixel feature space Z is extended from the RGB color space [0, 255]3 to the RGB-XY space
([0, 255]3 × [0,width− 1]× [0, height− 1]). To robustly estimate the distributions from sample
pixels, we use histograms PL

l|Z̃ : Z̃ → [0, 1] computed by a quantized feature space Z̃ where
the RGB-values are quantized uniformly by some bin-width, and XY-values are quantized by
N ×N -grids. For example, when RGB-values are quantized by a bin-width of 4, and XY-values
are quantized by 4× 4-grids, the histogram PL

l|Z̃ consists of 643 × 42 bins. The concept of this
5D histogram is illustrated in Figure A.1.

In this approach the quantization level of XY-values directly influences the performance of the
segmentation method; it may become too sensitive to objects’ positions with fine-quantization,
and becomes in turn totally insensitive with 1×1-grid quantization. To deal with this issue, we
re-formulate the matching termsMl(L|Hl) of Equation (A.2) as the weighted sum of multiple
matching terms with different quantization levels Z̃ ∈ Q:

Ml(L|Hl) = −
∑
Z̃∈Q

ωZ̃ B
(
PL
l|Z̃ ,Hl|Z̃

)
(l = F,B). (A.8)

Here, the weight of each quantization level ωZ̃ is normalized so that
∑

Z̃∈Q ωZ̃ = 1. The definition
of the weights ωZ̃ is discussed in the next section. Our proposed method is to use the energy
function E(L|HF ,HB) of DDM in Equation (A.1) but replace the definition of the matching
termsMl(L|Hl) with Equation (A.8). Note that if only one level of quantization Q = {Z̃} is
used and its spatial quantization is defined as 1×1-grid (i.e. use no spatial information), our
method is equivalent to DDM [Taniai et al., 2012]. By simultaneously evaluating consistencies
with different quantization levels, we expect an increased robustness to the settings of the spatial
kernel size of histograms. We shall denote our method using DDM by 5D-DDM.

Note that our new energy function can be optimized in the same manner with DDM [Taniai
et al., 2012] because the formulations are essentially equivalent. The only modifications we need
are to make 5D histograms instead of 3D, and to sum the multiple matching terms with different
quantization levels for calculating the energy function and cost values during the optimization.

A.3.3 Weights of Matching Terms with Different Quantization Levels

The simplest strategy for determining the weights of quantization levels ωZ̃ is to set them evenly
as ωZ̃ = 1/|Q|. Although this simple strategy yields good performance as will be shown in the
experiments, we investigate a more sophisticated way specialized for DDM where we adaptively
estimate the weights based on the accuracies of input distributions.
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It has been shown in [Taniai et al., 2012] that the dual distribution matching termD(L|HF ,HB) :=

λFMF (L|HF ) + λBMB(L|HB) in Equation (A.1) with the estimated weights λF and λB of
Equation (A.5) is lower-bounded by the minimum value ofMΩ(η|HF ,HB) in Equation (A.7),
i.e.,

− 1 ≤MΩ(ηF |HF ,HB) ≤ D(L|HF ,HB) (A.9)

holds for an arbitrary L. Furthermore,MΩ(ηF |HF ,HB) takes its lowest bound of −1 when the
input distributionsHF andHB are given as ground truth. These facts suggest that the minimum
matching valueMΩ(ηF |HF ,HB) is somehow related to the performance limitation of using
D(L|HF ,HB) with given input distributions HF and HB; when MΩ(ηF |HF ,HB) is close
to −1, using D(L|HF ,HB) is more realistic, and when close to 0 unrealistic. Based on this
assumption we determine the weights of quantization levels ωZ̃ as below.

We first compute the matching valueMΩ(ηF |HF ,HB) using each quantization level Z̃ ∈ Q.
Let D(Z̃) denote such matching values defined as the Bhattacharyya distance as

D(Z̃) = − logB
(
HΩ|Z̃ , H̃Ω|Z̃(ηF )

)
≥ 0. (A.10)

Then we compute relative matching values D̄(Z̃) by

D̄(Z̃) = D(Z̃)− min
Z∈Q

D(Z). (A.11)

As we prefer a bigger weight ωZ̃ for a smaller distance D̄(Z̃), we define ωZ̃ using the Gaussian
probability as

ωZ̃ = exp
(
−D̄(Z̃)/2σ2

)
/
∑
Z̃∈Q

ωZ̃ (A.12)

where σ is a user-defined parameter.

A.4 Experiments

In the following sections we assess the performance of our method in image and video segmentation.
Throughout the experiments we use a laptop computer with a mobile version of Core i7 CPU (2.80
GHz) and 8 GB RAM. We implement our method using C++ and a graph cut implementation of
[Boykov and Kolmogorov, 2004].

A.4.1 Image segmentation

In this section we evaluate the performance of our segmentation method using 50 images in
GrabCut segmentation dataset [Rother et al., 2004]. We compare the following six settings for
our 5D-DDM method: (a) three levels of spatial quantization of 1×1, 2×2, and 4×4-grids with
estimated weights ωZ̃ using σ = 0.2, (b) the same settings with (a) but use uniform weights for
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ωZ̃ , (c) two levels of spatial quantization of 1×1 and 2×2-grids, (d) 1×1-grid quantization (i.e.
equivalent to DDM [Taniai et al., 2012]) as the baseline method, (e) 2×2-grid quantization, and
(f) 4×4-grid quantization. For (a)–(f), we use {λ, ε} = {10−3, 8× 10−4} and 643 quantization
(bin-width 4) for the RGB color space as specified in [Taniai et al., 2012]. As a reference we also
compare with (g) interactive graph cuts [Boykov and Jolly, 2001] as a local measure method.

As the inputs, we make approximate pixel feature distributions of foreground and background
regions (HF andHB) from trimaps given by the dataset. Note that we use trimaps only for making
input distributions and we do not use them as hard constraints. We use two accuracy measures,
error pixel rate (EPR) and error to object ratio (EOR), defined as

EPR =
# error pixels
# all pixels

, EOR =
# error pixels

# true foreground pixels
.

We show in Table A.1 the average EPRs, EORs and running times of the seven methods.
Among them, (a) 5D-DDM using three levels of spatial quantization with estimated weights
outperforms the other methods in both EPR and EOR evaluations. Comparing (a) with (b), our
adaptive weight estimation allows a small improvement with almost no extra computational cost.
Seeing the results of (d)–(f) that use a single quantization level, (e) 2×2-grid quantization improves
the accuracy over (d) the baseline, but degrades when using (f) 4×4-grids. The combinational use
of these three quantization levels improves the performance as shown in (b) and (c). Interestingly,
despite that (f) 4×4-grid quantization alone degrades the performance, it yields improvements
when combined with the other quantization levels as shown in (b) and (c).

Figure A.2 shows example results of three methods (a) 5D-DDM using three levels of quanti-
zation with estimated weights, (d) DDM, and (g) interactive graph cuts. Being a global measure
method, (a) and (d) well preserve thin structures compared with (g) a local measure method. Also,
(a) our method performs better than (b) DDM when foreground and background regions share
similar colors, e.g., see the results of sheep, where the sheep in the background is correctly labeled
as background in (a).

A.4.2 Video Segmentation

We further evaluate the performance of our method by applying to a video sequence foreman,
which consists of 100 frames with 352× 288-size. We first manually segment the first frame, and
apply our method for the rest of the frames using input distributionsHF andHB learned from the
result of the previous frames.

In Figure A.3 we show example frames of the segmentation results obtained by (a) 5D-DDM
using three levels of spatial quantization, (d) DDM [Taniai et al., 2012], and (d+) DDM [Taniai
et al., 2012] with shape priors [Freedman and Zhang, 2005] using previous frame’s results as
shape templates. Because the colors of the helmet is similar to the background colors, it is difficult
even for (d) DDM to correctly separate foreground from background regions. By using spatial
information (a) our method performs better than (d) DDM. In addition, our method seems more

114



A.5. CONCLUSIONS

Table A.1 Comparison of segmentation accuracies for 50 images of GrabCut dataset [Rother et al., 2004].
The results of our methods, DDM Taniai et al. [2012], and BJGC Boykov and Jolly [2001] are shown.

# grids of Z̃ ∈ Q EPR (mean±std) EOR (mean±std) time/image [sec]
(a) 5D-DDM (adaptive ωZ̃ ) 12, 22, 42 1.07 ± 0.69 % 6.38 ± 4.81 % 10.09
(b) 5D-DDM 12, 22, 42 1.09 ± 0.73 % 6.44 ± 4.97 % 10.04
(c) 5D-DDM 12, 22 1.13 ± 0.71 % 6.81 ± 5.14 % 4.49
(d) 5D-DDM (baseline; DDM) 12 1.23 ± 0.79 % 7.88 ± 6.55 % 2.32
(e) 5D-DDM 22 1.12 ± 0.74 % 6.80 ± 5.42 % 3.64
(f) 5D-DDM 42 1.35 ± 0.95 % 8.36 ± 7.88 % 7.56
(g) BJGC (local measures) - 1.53 ± 0.96 % 10.4 ± 9.40 % 0.23

robust to dynamic scene changes than shape priors [Freedman and Zhang, 2005] used in (d+). For
example, a hand that suddenly appears at the frame #89 is correctly labeled as foreground even
using spatial information learned from the frame #88 where the hand is not shown yet. This is
because the use of RGBXY histograms helps to resolve ambiguity in RGB-histogram matching,
rather than directly constrains object regions as done by shape priors.

A.5 Conclusions

In this paper we present a method for incorporating pixel’s spatial information into distribution
matching approaches in the context of image segmentation. Our method is simply formulated
as distribution matching using 5D histograms of augmented pixel vectors (R,G,B,X,Y), thus it
can be used in various distribution matching methods. Particularly in this paper, our method is
demonstrated using a recently proposed robust distribution matching method, dual distribution
matching [Taniai et al., 2012]. We show in the experiments that, by combining multiple distribution
matching terms with various spatial kernel sizes of histograms, the accuracy and robustness of the
baseline method can be further improved. Since spatial information is used as soft constraints our
method is robust to dynamic scene changes in video segmentation.

Currently our method is demonstrated only using dual distribution matching [Taniai et al.,
2012] but can be used with other distribution matching methods [Rother et al., 2006; Ayed et al.,
2010; Pham et al., 2011; Ayed et al., 2013; Gorelick et al., 2013]. We leave the performance
evaluations of those cases as our future work. Also, although the current implementation of our
method is relatively slow, recent works by Punithakumar et al. [Punithakumar et al., 2013, 2012]
show that distribution matching methods can be efficiently performed in a parallel manner on
GPUs using convex maxflow approaches. The development of an efficient GPU implementation
of our method is thus another future direction.
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sheep person5 304074 208001

EPR: 0.267%, EOR: 5.138%EPR: 0.329%, EOR: 4.866%EPR: 1.290%, EOR: 20.87%EPR: 0.436%, EOR: 3.398%
(a) Proposed 5D-DDM

EPR: 1.086%, EOR: 20.89% EPR: 0.653%, EOR: 8.324% EPR: 1.701%, EOR: 27.53% EPR: 1.074%, EOR: 8.371%
(d) DDM [Taniai et al., 2012]

EPR: 1.198%, EOR: 24.83% EPR: 2.224%, EOR: 32.91% EPR: 2.333%, EOR: 37.74% EPR: 1.198%, EOR: 9.336%
(g) BJGC [Boykov and Jolly, 2001]

Figure A.2 Segmentation results for GrabCut dataset [Rother et al., 2004] using approximate input distri-
butions learned from trimaps. We show example results of (a) the proposed 5D-DDM using three levels of
spatial quantization of 1×1, 2×2, and 4×4-grids, (d) DDM [Taniai et al., 2012] using no spatial information
as the baseline method, and (g) interactive graph cuts [Boykov and Jolly, 2001] as a local measure method.
Blue lines indicate the ground truth boundaries and red the resulting segmentation boundaries.
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# 9 # 15 # 40 # 74 # 88 # 89

(a) Proposed 5D-DDM

(d) DDM [Taniai et al., 2012]

(d+) DDM [Taniai et al., 2012] with shape priors [Freedman and Zhang, 2005]

Figure A.3 Video segmentation results for “foreman”. See also the supplementary video. Using spatial
information (a) the proposed 5D-DDM performs better than (d) the baseline method. Because our method
uses spatial information as soft constraints, it is robust to dynamic scene changes, e.g., a hand that suddenly
appears at the frame #89 is correctly labeled even using spatial information of the previous frame #88.
Shape priors [Freedman and Zhang, 2005] used in (d+) seem less robust than our method.
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