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Complex unknown non-linearity: Real 
objects have various reflectance properties 
(BRDFs) that are complex and unknown.

Lack of training data: Deeply learning 
complex relations of surface normals and 
BRDFs is promising, but accurately 
measuring ground truth of surface normals
and BRDFs is difficult.

Permutation invariance: Permuting input 
images should not change the resulting 
surface normals.

• Each scene is provided 96 images with known lightings.

• Santo et al. (2017) use a supervised DNN method pre-trained on synthetic data.

• Others are classical physics-based unsupervised methods.

Surface normals
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Real-world scene benchmark (mean angular errors in degrees) [Shi+18]
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Photometric stereo network  (PSNet)

Image reconstruction network  (IRNet)
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Two-stream physics-embedded network 
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Analysis of network architecture and early-stage weak supervision

Termination of supervision Termination of supervision

Early-stage sup. No sup. All-stage sup. Early-stage sup. No sup. All-stage sup.

Images observed under

varying illuminations
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Image reconstruction loss Least squares (LS) prior

𝐿 =
1

𝑀
σ𝑖=1
𝑀 𝑰𝑖 − 𝑰𝑖 1

+ 𝜆𝑡 ഥ𝑵 − 𝑵′
2

2

Minimize intensity differences btw
synthesized 𝑰𝑖 and observed 𝑰𝑖 images.

Constrain the output normals ഥ𝑵 to be close

to prior normals 𝑵′ obtained by the LS method.

Loss function

• Global observation blending (𝚽) provides global information to enrich feature maps in IRNet.
• Specularity input (𝑺𝑖) gives a hint to IRNet to promote recovery of complex specular reflections.

Test-time learning with early-stage weak supervision

Our physics-embedded 

auto-encoder

• Run PSNet to produce a normal map ഥ𝑵.

• Run IRNet to reconstruct all input images as 𝑰𝑖 .

• Compute the loss and update network parameters.

• Terminate the prior (𝜆𝑡 ← 0)  if iterations > 50 (because the prior has low accuracy)

Until  convergence (1000 iterations)

Initialize network parameters randomly.

Compute LS solution 𝑵′.
Repeat Adam’s iterations

No pre-training

Directly optimize randomly-

initialized network parameters 

for a given test scene images.

(deep image prior [Dmitry+18])

𝐼 = 𝑠 𝜌 ഥ𝒏, തℓ, ഥ𝒗 max 0, ℓ𝑇ഥ𝒏 𝐼: Pixel intensity (known)

𝑠: {0,1} cast shadow (known)

ഥ𝒗: view direction (known)

ℓ: lighting (known)

𝜌: BRDF (unknown)

ഥ𝒏: surface normal (unknown)

Reflectance (rendering) equation
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Physical generative model
𝑿 = 𝑓(𝒀, 𝒁)
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• No GT

• No training 

data


