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Abstract
We present a novel convolutional neural network
architecture for photometric stereo (Woodham,
1980), a problem of recovering 3D object surface
normals from multiple images observed under
varying illuminations. Despite its long history
in computer vision, the problem still shows fun-
damental challenges for surfaces with unknown
general reflectance properties (BRDFs). Lever-
aging deep neural networks to learn complicated
reflectance models is promising, but studies in this
direction are very limited due to difficulties in ac-
quiring accurate ground truth for training and also
in designing networks invariant to permutation of
input images. In order to address these challenges,
we propose a physics based unsupervised learning
framework where surface normals and BRDFs are
predicted by the network and fed into the render-
ing equation to synthesize observed images. The
network weights are optimized during testing by
minimizing reconstruction loss between observed
and synthesized images. Thus, our learning pro-
cess does not require ground truth normals or even
pre-training on external images. Our method is
shown to achieve the state-of-the-art performance
on a challenging real-world scene benchmark.

1. Introduction
3D shape recovery from images is a central problem in com-
puter vision. While geometric approaches such as binoc-
ular (Kendall et al., 2017; Taniai et al., 2017) and multi-
view stereo (Furukawa & Ponce, 2010) use images from
different viewpoints to triangulate 3D points, photometric
stereo (Woodham, 1980) uses varying shading cues of multi-
ple images to recover 3D surface normals. It is well known
that photometric methods prevail in recovering fine details
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Figure 1. Reconstruction based photometric stereo. Given mul-
tiple images observed under varying illuminations, our inverse-
rendering network estimates a surface normal map and reflectance
images. We then reconstruct (or render) the observed images using
these estimates and input illuminations. The synthesized images
are used to define reconstruction loss for unsupervised learning.

of surfaces, and play an essential role for highly accurate
3D shape recovery in combined approaches (Nehab et al.,
2005; Esteban et al., 2008; Park et al., 2017). Although there
exists a closed-form least squares solution to the simplest
Lambertian surfaces, such ideally diffuse materials rarely
exist in the real word. Photometric stereo for surfaces with
unknown general reflectance properties (i.e., bidirectional
reflectance distribution functions or BRDFs) still remains
as a fundamental challenge (Shi et al., 2018).

Meanwhile, deep learning technologies have drastically
pushed the envelope of state-of-the-art in many computer
vision tasks such as image recognition (Krizhevsky et al.,
2012; He et al., 2015; 2016), segmentation (He et al., 2017b)
and stereo vision (Kendall et al., 2017). As for photometric
stereo, it is promising to replace hand-crafted reflectance
models with deep neural networks to learn complicated
BRDFs. However, studies in this direction so far are surpris-
ingly limited (Santo et al., 2017; Hold-Geoffroy et al., 2018).
This is possibly due to difficulties of making a large amount
of training data with ground truth. Accurately measuring
surface normals of real objects is very difficult, because
we need highly accurate 3D shapes to reliably compute
surface gradients. In fact, a real-world scene benchmark
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of photometric stereo with ground truth has only recently
been introduced by precisely registering laser-scanned 3D
meshes onto 2D images (Shi et al., 2018). Using synthetic
training data is possible (Santo et al., 2017), but we need
photo-realistic rendering that should ideally account for var-
ious realistic BRDFs and object shapes, spatially-varying
BRDFs and materials, presence of cast shadows and inter-
reflections, etc. This is more demanding than training-data
synthesis for stereo and optical flow (Mayer et al., 2016)
where rendering by the simplest Lambertian reflectance
often suffices. Also, measuring BRDFs of real materials
requires efforts and an existing BRDF database (Matusik
et al., 2003) provides only a limited number of materials.

As another difficulty of applying deep learning to photomet-
ric stereo, when networks are pre-trained, they need to be
invariant to permutation of inputs, i.e., permuting input im-
ages (and corresponding illuminations) should not change
the resulting surface normals. Existing neural network meth-
ods (Santo et al., 2017) avoid this problem by assuming the
same illumination patterns throughout training and testing
phases, which limits application scenarios of methods.

In this paper, we propose a novel convolutional neural net-
work (CNN) architecture for general BRDF photometric
stereo. Given observed images and corresponding lighting
directions, our network inverse renders surface normals and
spatially-varying BRDFs from the images, which are further
fed into the reflectance (or rendering) equation to synthesize
observed images (see Fig. 1). The network weights are opti-
mized by minimizing reconstruction loss between observed
and synthesized images, enabling unsupervised learning
that does not use ground truth normals. Furthermore, learn-
ing is performed directly on a test scene during the testing
phase without any pre-training. Therefore, the permuta-
tion invariance problem does not matter in our framework.
Our method is evaluated on a challenging real-world scene
benchmark (Shi et al., 2018) and is shown to outperform
state-of-the-art learning-based (Santo et al., 2017) and other
classical unsupervised methods (Shi et al., 2014; 2012; Ike-
hata & Aizawa, 2014; Ikehata et al., 2012; Wu et al., 2010;
Goldman et al., 2010; Higo et al., 2010; Alldrin et al., 2008).
We summarize the advantages of our method as follows.
• Existing neural network methods require pre-training

using synthetic data, whenever illumination conditions
of test scenes change from the trained ones. In contrast,
our physics-based approach can directly fit network
weights for a test scene in an unsupervised fashion.
• Compared to classical physics-based approaches, we

leverage deep neural networks to learn complicated
reflectance models, rather than manually analyzing
and inventing reflectance properties and models.
• Yet, our physics-based network architecture allows us

to exploit prior knowledge about reflectance properties
that have been broadly studied in the literature.
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Figure 2. Surface reflectance and BRDFs. We illustrate a situ-
ation where an object surface point with a normal vector n̄ is
illuminated by an infinitely distant point light source in a direction
¯̀, and is observed by a camera in a view direction v̄. Unknown
BRDFs have major components of diffuse and specular reflections.
Shadows occur at surfaces where ¯̀T n̄ ≤ 0 (attached shadow) or
the light ray is occluded by objects (cast shadow).

2. Preliminaries
Before presenting our method, we recap basic settings and
approaches in photometric stereo. Suppose a reflective sur-
face with a unit normal vector n̄ ∈ R3 is illuminated by
a point light source ` ∈ R3 (where ` = ` · ¯̀ has an inten-
sity ` > 0 and a unit direction ¯̀), without interreflection
and ambient lighting. When this surface is observed by a
linear-response camera in a view direction v̄ ∈ R3, its pixel
intensity I ∈ R+ is determined as follows.

I = sρ(n̄, ¯̀, v̄) max(`T n̄, 0) (1)

Here, s ∈ {0, 1} is a binary function for the presence of a
cast shadow, ρ(n̄, ¯̀, v̄) is a BRDF, and max(·, 0) represents
an attached shadow. Figure 2 illustrates this situation.

The goal of photometric stereo is to recover the surface
normal n̄ from intensities I , when changing illuminations `.
Here, we usually assume a camera with a fixed viewpoint
and an orthogonal projection model, in which case the view
direction v̄ is constant and typically v̄ = (0, 0, 1)T . Also,
light sources are assume to be infinitely distant so that ` is
uniform over the entire object surfaces.

2.1. Lambertian model and least squares method

When the BRDF ρ(n̄, ¯̀, v̄) is constant as ρ0, the surface
is purely diffuse. Such a model is called the Lambertian
reflectance and the value ρ0 is called albedo. In this case,
estimation of n̄ is relatively easy, because for bright pixels
(I > 0) the reflectance equation of Eq. (1) becomes a linear
equation: I = `Tn where n = ρ0n̄. Therefore, if we know
at least three intensity measurements I ∈ RM

+ (M ≥ 3) and
their lighting conditions L = [`1, `2, . . . , `M ]T ∈ RM×3,
then we obtain a linear system

I = Ln, (2)



Neural Inverse Rendering for General Reflectance Photometric Stereo

which is solved by least squares as

n = L†I. (3)

Here, L† is the pseudo inverse ofL, and the resulting vector
n = ρ0n̄ is then L2-normalized to obtain the unit normal n̄.

In practice, images are contaminated as I + e due to sen-
sor noises, interreflections, etc. Therefore, we often set a
threshold τ for selecting inlier observation pixels Ii > τ .

When the lighting conditionsL are unknown, the problem is
called uncalibrated photometric stereo. It is known that the
problem has the so-called bas-relief ambiguity (Belhumeur
et al., 1999), and is difficult even for the Lambertian surfaces.
In this paper, we focus on the calibrated photometric stereo
settings that assume known lighting conditions.

2.2. Photometric stereo for general BRDF surfaces

When the BRDF ρ(n̄, ¯̀, v̄) has unknown non-Lambertian
properties, photometric stereo becomes very challenging,
because we essentially need to know the form of the BRDF
ρ(n̄, ¯̀, v̄) by assuming some reflectance model to it or by di-
rectly estimating ρ(n̄, ¯̀, v̄) along with the surface normal n̄.
Below we briefly review existing such approaches and their
limitations. For more comprehensive reviews, please refer
to a recent excellent survey by Shi et al. (2018).

Ourlier rejection based methods. A group of methods
treat non-Lambertian reflectance components including
specular highlights and shadows as outliers to the Lam-
bertian model. Thus, Eq. (2) is rewritten to

I = Ln+ e, (4)

where non-Gaussian outliers e are assume to be sparse.
Recent methods solve this sparse regression problem by
using robust statistical techniques (Wu et al., 2010; Ikehata
et al., 2012) or using learnable optimization networks (Xin
et al., 2016; He et al., 2017a). However, this approach
cannot handle broad and soft specularity due to the collapse
of the sparse outlier assumption (Shi et al., 2018).

Analytic BRDF models. Another type of methods use
more realistic BRDF models than the Lambertian model
matured in the computer graphics literature, e.g., the
Torrance-Sparrow model (Georghiades, 2003), the Ward
model (Chung & Jia, 2008), or a Ward mixture model (Gold-
man et al., 2010). These models explicitly consider specu-
larity rather than treating it as outliers, and often take a form
of the sum of diffuse and specular components as follows.

ρ(n̄, ¯̀, v̄) = ρdiff + ρspec(n̄, ¯̀, v̄) (5)

However, these methods rely on hand-crafted models that
can only handle narrow classes of materials.

General isotropic BRDF properties. More advanced
methods directly estimate the unknown BRDF ρ(n̄, ¯̀, v̄)
by exploiting some general BRDF properties. For example,
many materials have an isotopic BRDF that only depends
on relative angles between n̄, ¯̀and v̄. Given the isotropy,
Ikehata & Aizawa (2014) further assume the following bi-
variate BRDF function

ρ(n̄, ¯̀, v̄) = ρ(n̄T ¯̀, ¯̀T v̄) (6)

with monotonicity and non-negativity constraints. Similarly,
Shi et al. (2014) exploit a low-frequency prior of BRDFs
and propose a bi-polynomial BRDF:

ρ(n̄, ¯̀, v̄) =
k∑

i=0

k∑
j=0

Cijx
iyj , (7)

where x = n̄T h̄, y = ¯̀T h̄, and h̄ = (¯̀+ v̄)/‖ ¯̀+ v̄‖2.

Our method is close to the last approach in that we learn
broad classes of a BRDF from observations without restrict-
ing it to a particular reflectance model. However, unlike
those methods that fully rely on careful human analysis of
BRDF properties, we leverage the powerful expressibility of
deep neural networks to learn general complicated BRDFs.
Yet, our network architecture also explicitly uses the physi-
cal reflectance equation of Eq. (1) internally, which allows
us to incorporate abundant wisdom about reflectance devel-
oped in the literature, into neural network based approaches.

3. Proposed method
In this section, we present our novel inverse-rendering based
neural network architecture for photometric stereo, and ex-
plain its learning procedures with a technique of early-stage
weak supervision. Here, as standard settings of calibrated
photometric stereo, we assume M patterns of light source
directions `i (i ∈ {1, 2, . . . ,M}) and corresponding image
observations Ii as inputs. We also assume that the maskO
of target object regions is provided. Our goal is to estimate
the surface normal map N̄ of the target object regions.

Notations. We use bold capital letters for tensors and ma-
trices, and bold small letters for vectors. We use tensors of
dimensionalityD×H×W to represent images, and normal
and other feature maps, where D is some channel number
and H ×W is the spatial resolution. Thus, Ii ∈ RC×H×W

and N̄ ∈ R3×H×W , where C is the number of color chan-
nels of images. We use the subscript p to denote a pixel
location of such tensors, e.g., N̄p ∈ R3 is a normal vector
at p. The light vectors `i can also have color channels, in
which case `i ∈ R3×C are matrices but we use a small letter
for intuitiveness. The index i is always used to denote the
observation index i ∈ {1, 2, . . . ,M}. When we use tensors
of dimensionality B ×D ×H ×W , the first dimension B
denotes a minibatch size processed in one SGD iteration.
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Figure 3. Proposed network architecture for photometric stereo. We use two subnetworks, both are fully convolutional. [TOP] The
photometric stereo network (PSNet) outputs a surface normal map N̄ as the desired solution, given an image tensor I that concatenates
all observed images {I1, I2, . . . , IM} of a test scene. [BOTTOM] The image reconstruction network (IRNet) synthesizes each observed
image Ii using the rendering equation. IRNet is used to define reconstruction loss between the observed and synthesized images for
unsupervised learning. Note that, as calibrated photometric stereo, the lighting directions {`1, `2, . . . , `M} are also provided as inputs,
and used for the computations of the rendering equation and a specular component input Si. Also, dimensionality B ×D ×H ×W of
tensors denotes a minibatch size B, channel number D, and spatial resolution H ×W , respectively, where B = 1 is omitted in PSNet.

3.1. Network architecture

We illustrate our network architecture in Fig. 3. Our method
uses two subnetworks, which we name the photometric
stereo network (PSNet) and image reconstruction network
(IRNet), respectively. PSNet predicts a surface normal map
as the desired output, given the input images. On the other
hand, IRNet synthesizes observed images using the render-
ing equation of Eq. (1). The synthesized images are used to
define reconstruction loss with the observed images, which
produces gradients flowing into both networks and enables
learning without ground truth supervision. We now explain
these two networks in more details below.

3.1.1. PHOTOMETRIC STEREO NETWORK

Given a tensor I ∈ RMC×H×W that concatenates all M
input images along the channel axis, PSNet first converts it
to an abstract feature map Φ ∈ RDps×H×W as

Φ = fps1(I;θps1), (8)

and then outputs a surface normal map N̄ given Φ as

N̄ = fps2(Φ;θps2). (9)

Here, fps1 is a feed-forward CNN of three layers with learn-
able parameters θps1, where each layer applies 3x3 Conv
of Dps channels, BatchNorm (Ioffe & Szegedy, 2015), and
ReLU. We use channels of Dps = 384, and use no skip-

connections or pooling. Similarly, fps2 applies 3x3 Conv
and L2 normalization that makes each N̄p a unit vector.

3.1.2. IMAGE RECONSTRUCTION NETWORK

IRNet synthesizes each observed image Ii as Îi based on the
rendering equation of Eq. (1). Specifically, IRNet first pre-
dicts R = sρ(n̄, ¯̀, v̄), the multiplication of a cast shadow
and a BRDF, under a particular illumination `i as

R̂i = fir(Ii, N̄ , ¯̀
i, v̄,Φ;θir). (10)

Here, we call R̂i ∈ RC×H×W a reflectance image, which
is produced by a CNN fir as explained later. Then, IRNet
synthesizes each image Îi by the rendering equation below.

Îi = R̂i �max(`Ti N̄ ,0) (11)

Here, the inner products between light `i and normal vectors
N̄ are computed at each pixel p by `Ti N̄p. Note that when
`i has color channels, we multiply a matrix `Ti ∈ RC×3 to
N̄p. Consequently, `Ti N̄ and R̂i have the same dimensions
with I . The max(·,0) is done elementwise and is imple-
mented by ReLU, and � is elementwise multiplication. We
now explain details of fir by dividing it into three parts.

Individual observation transform. The first part trans-
forms each observed image Ii (which we denote asXi) into
a feature map Yi ∈ RDir×H×W as follows.

Yi = fir1(Xi;θir1) (12)
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The network architecture of fir1 is the same with fps1 in
Eq. (8), except that we use channels of Dir = 16 for fir1.
To more effectively learn BRDFs, we use an additional
specularity channel Si for the inputXi as

Xi = Concat(Ii,Si), (13)

where Si ∈ R1×H×W is computed at each pixel p as

Sip = v̄T s̄ip = v̄T
[
2( ¯̀T

i N̄p)N̄p − ¯̀
i

]
. (14)

Here, s̄ip is the direction of the specular reflection (dashed
line between n̄ and v̄ in Fig. 2). It is well known by past
studies that Sip is highly correlated with the actual specular
component of a BRDF. Therefore, directly giving it as a hint
to the network will promote learning of complex BRDFs.

Global observation blending. Because Yi has limited
observation information under a particular illumination `i,
we enrich it by Φ in Eq. (8) that has more comprehensive
information of the scene. We do this similarly to global and
local feature blending in (Charles et al., 2017; Iizuka et al.,
2016) as

Zi = fir2(Concat(Yi,Φ);θir2), (15)

where fir2 applies 1x1 Conv, BatchNorm, and ReLU. Note
that applying Conv to Concat(Yi,Φ) is efficiently done as
W1Yi +W2Φ + b where Conv ofW2Φ + b is computed
only once and reused for all observations i.

Output. After the blending, we finally output R̂i by

R̂i = fir3(Zi;θir3), (16)

where fir3 is 3x3 Conv, BatchNorm, ReLU, and 3x3 Conv.
As explained in Eq. (11), the resulting R̂i is used to recon-
struct each image as Îi, which is the final output of IRNet.

Note that the internal channels of IRNet are all the same
as Dir. Also, IRNet simultaneously reconstructs all images
during SGD iterations, by treating them as a minibatch:
Î = Batch(Î1, Î2, . . . , ÎM ) ∈ RM×C×H×W . This learn-
ing procedure is more explained in the next section.

3.2. Learning procedures (optimization)

We optimize the network parameters θ by minimizing the
following loss function using SGD.

L = Lrec(Î, I) + λtLprior(N̄ , N̄ ′) (17)

The first term defines reconstruction loss between the syn-
thesized Î and observed images I , which is explained in
Sec. 3.2.1. The second term defines weak supervision loss
between the predicted N̄ and some prior normal map N̄ ′.
This term is only activated in early iterations of SGD (i.e.,
λt = 0 when t > T ) in order to warm up randomly ini-
tialized networks and stabilize the learning. This is more

explained in Sec. 3.2.2. Other implementation details and
hyper-parameter settings are described in Sec. 3.2.3.

Most importantly, the network is directly fit for a particular
test scene without any pre-training on other data, by updat-
ing the network parameters θ over SGD iterations. Final
results are obtained at convergence.

3.2.1. RECONSTRUCTION LOSS

The reconstruction loss is defined as mean absolute errors
between Î and I over target object regionsO as

Lrec(Î, I) =
1

MCO

∑
i,c,p

Op|Îicp − Iicp|. (18)

Here, O in {1, 0}1×H×W is the binary object mask, and
O =

∑
pOp is its object area size. Using absolute errors in-

creases the robustness to high-intensity specular highlights.

3.2.2. EARLY-STAGE WEAK SUPERVISION

If the target scene has relatively simple reflectance proper-
ties, the reconstruction loss alone can often lead to a good
solution, even starting with randomly initialized networks.
However, for complex scenes, we need to warm up the
network by adding the following weak supervision.

λtLprior(N̄ , N̄ ′) = λt
1

O

∑
p

Op‖N̄p − N̄ ′p‖22 (19)

Here, the prior normal map N̄ ′ is obtained by the simplest
least squares method described in Sec. 2.1 using all observed
pixels without any thresholding. Due to the presence of
shadows and non-Lambertian specularity, this least squares
solution can be very inaccurate. However, even such priors
work well in our method, because we only use them to guide
the optimization in its early stage. For this, we set λt to 0.1c
for initial 50 iterations, and then set it to zero afterwards.
The coefficient c is to adaptively balance weights between
Lrec and Lprior, and is computed as the mean intensities of I
over target object regions, i.e., c = Lrec(0, I).

3.2.3. IMPLEMENTATION DETAILS

We use Adam (Kingma & Ba, 2015) as the optimizer. For
each test scene, we iterate SGD updates for 1000 steps.
Adam’s hyper-parameter α is set to α0 = 8 × 10−4 for
first 900 iterations, and then decreased to α0/10 for last
100 iterations for fine-tuning. We use the default values for
the other hyper-parameters. The convolution weights are
randomly initialized by He initialization (He et al., 2015).

In each iteration, PSNet predicts a surface normal map N̄ ,
and then IRNet reconstructs all observed images Î as sam-
ples of a minibatch. Given N̄ and Î , we compute the loss
L and update the parameters θ of both networks.
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When computing the reconstruction loss Lrec in Eq. (18),
we randomly dropout 90% of its elements and rescale Lrec
by a factor of 10 instead. This treatment is to compensate
for the well known issue of poor local convergence of SGD
by the use of a large minibatch (Keskar et al., 2017).

Because we learn network parameters during testing, we
always run BatchNorm by the training mode using statistics
of given data (i.e., we never use moving-average statistics).

Before being fed into the network, the input images I are
cropped by a loose bounding box of the target object regions
for reducing redundant computations. Then, the images are
normalized by global scaling as

I ′ = I/(2σ), (20)

where σ is the square-root of mean squared intensities of I
over target regions. For PSNet, the normalized image tensor
I ′ is further concatenated with the binary maskO as input.

4. Experiments
In this section we evaluate our method using a challenging
real-world scene benchmark called DiLiGenT (Shi et al.,
2018). In Sec. 4.1, we show comparisons with state-of-
the-art photometric stereo methods. We then more analyze
our network architecture in Sec. 4.2 and weak supervision
technique in Sec. 4.3. In the experiments, we useM = 96 of
observed images for each scene provided by the DiLiGenT
dataset. Our method is implemented in Chainer (Tokui et al.,
2015) and is run on a single nVidia Tesla V100 GPU with
16 GB memory and 32 bit floating-point precision.

4.1. Real-world scene benchmark (DiLiGenT)

We show our results on the DiLiGenT benchmark (Shi et al.,
2018) in Table 1, where we compare our method with ten
existing methods by mean angular errors. We also show
visual comparisons of the top three and baseline methods
for READING and HARVEST in Fig. 4. Our method achieves
the best average score and best individual scores for eight
scenes (excepting only two scenes of GOBLET and HAR-
VEST) that contain various materials and reflectance sur-
faces. This is remarkable considering that another neu-
ral network method (Santo et al., 2017) outperforms the
other existing methods only for HARVEST, in spite of its
supervised learning. This HARVEST is the most difficult
scene of all due to heavy interactions of cast shows and
interreflections as well as spatially-varying materials and
complex metallic BRDFs. For such complex scenes, su-
pervised pre-training (Santo et al., 2017) is effective. The
baseline method poorly performs especially for specular ob-
jects. Although we use its results as guidance priors, its low
accuracy is not critical to our method thanks to the proposed
early-stage supervision. We more analyze it in Sec. 4.3.

4.2. Analysis of the network architecture

In the middle part of Table 2, we show performance changes
of our method by modifying its architecture. Specifically,
we test two settings where we disable two connections from
PSNet to IRNet, i.e., the specularity channel input and the
global observation blending described in Sec. 3.1.2. As
shown, the proposed full architecture performs best, while
the removal of the specularity channel input has the most
negative impact. As expected, directly inputting a specular-
ity channel indeed eases learning of complex BRDFs (e.g.,
metallic surfaces in COW), demonstrating a strength of our
physics-based network architecture that can exploit known
pysical reflectance properties for BRDF learning.

4.3. Effects of early-stage weak supervision

We here evaluate the effectiveness of our learning strategy
using early-stage weak supervision, by comparing with two
cases where we use no or all-stage supervision (i.e., λt is 0
or constant). See the bottom part of Table 2 for performance
comparisons. Learning with no supervision produces com-
parable median scores but worse mean scores, compared to
early-stage supervision. This indicates that learning with no
supervision is very unstable and often gets stuck at bad local
minimums, as shown in Fig. 5 (green profiles). On the other
hand, learning with all-stage supervision is relatively sta-
ble but is strongly biased by inaccurate least-squares priors,
often producing worse solutions as shown in Fig. 5 (blue
profiles). In contrast, learning with the proposed early-stage
supervision (red profiles) is more stable and persistently
continues to improve accuracy even after terminating the
supervision at t = 50 (shown as vertical dashed lines).

5. Discussions and related work
Our method is inspired by recent work of deep image prior
by Ulyanov et al. (2018). They show that architectures of
CNNs themselves behave as good regularizers for natural
images, and show successful results for unsupervised tasks
such as image super-resolution and inpainting by fitting a
CNN for a single test image. However, their simple glass-
hour network does not directly apply to photometric stereo,
because we here need to simultaneously consider surface
normal estimation that accounts for global statistics of obser-
vations, as well as reconstruction of individual observations
for defining the loss. Our novel architecture addresses this
problem by resorting to ideas of classical physics-based
approaches to photometric stereo.

Our network architecture is also partly influenced by that of
(Santo et al., 2017), which regresses per-pixel observations
Ip ∈ RM to a 3D normal vector using a simple feed-forward
network of five fully-connected and ReLU layers plus an
output layer. Our PSNet becomes similar to theirs, if we use
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Table 1. Comparisons on ten real-world scenes of the DiLiGenT photometric stereo benchmark (Shi et al., 2018). We compare our
proposed method with ten existing calibrated photometric stereo methods. Here, we show mean angular errors in degrees (i.e., the mean
of arccos(N̄T

p N̄?
p ) over the object regions using ground truth normals N̄?

p ) for ten scenes, and average scores. Our method achieves
best accuracies for all except two scenes of GOBLET and HARVEST. The second best method (Santo et al., 2017) also uses a deep neural
network, but it requires supervised pre-training on synthetic data and outperforms the other existing methods only for HARVEST. The
results of the baseline least squares method are used in our method as prior normals for weak supervision. Since the priors are used only
for an early-stage of learning, their low accuracies are not critical to the performance of our method. Note that, due to a non-deterministic
property of our method, its accuracy for each scene is evaluated as the median score of 11 rounds run.

ball cat pot1 bear pot2 buddha goblet reading cow harvest avg.

Proposed 1.47 5.44 6.09 5.79 7.76 10.36 11.47 11.03 6.32 22.59 8.83
Santo et al. (2017) 2.02 6.54 7.05 6.31 7.86 12.68 11.28 15.51 8.01 16.86 9.41

Shi et al. (2014) 1.74 6.12 6.51 6.12 8.78 10.60 10.09 13.63 13.93 25.44 10.30
Ikehata & Aizawa (2014) 3.34 6.74 6.64 7.11 8.77 10.47 9.71 14.19 13.05 25.95 10.60

Goldman et al. (2010) 3.21 8.22 8.53 6.62 7.90 14.85 14.22 19.07 9.55 27.84 12.00
Alldrin et al. (2008) 2.71 6.53 7.23 5.96 11.03 12.54 13.93 14.17 21.48 30.50 12.61

Higo et al. (2010) 3.55 8.40 10.85 11.48 16.37 13.05 14.89 16.82 14.95 21.79 13.22
Wu et al. (2010) 2.06 6.73 7.18 6.50 13.12 10.91 15.70 15.39 25.89 30.01 13.35

Ikehata et al. (2012) 2.54 7.21 7.74 7.32 14.09 11.11 16.25 16.17 25.70 29.26 13.74
Shi et al. (2012) 13.58 12.34 10.37 19.44 9.84 18.37 17.80 17.17 7.62 19.30 14.58

Baseline (least squares) 4.10 8.41 8.89 8.39 14.65 14.92 18.50 19.80 25.60 30.62 15.39

Observed &
synthesized images

Ground truth /
Reconstruction errors Ours Santo et al. (2017) Shi et al. (2014) Baseline

(least squares)

45˚

90˚+

0˚
READING (intensity ×10) 11.03 15.51 13.63 19.80

HARVEST (intensity ×10) 22.59 16.86 25.44 30.62

Figure 4. Visual comparisons for READING and HARVEST scenes. From left to right columns in each scene, we show 1) observed and
our synthesized images, 2) ground truth normal and image reconstruction error maps, and 3–6) estimated surface normal and angular error
maps by four methods. Numbers under angular error maps show their mean errors. See the supplementary material for more comparisons.
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Table 2. Evaluations of the proposed network architecture and weak supervision. For each item we show median and mean scores
(in left and right) by 11 rounds run. Here, S, G and WS denote the specularity input, global observation blending, and weak supervision
by a prior normal map, respectively. Cell colors of red/blue indicate worse/better relative accuracy compared to the proposed settings.

S G WS

Proposed ✓ ✓ ✓ 1.47 1.50 5.44 5.38 6.09 6.15 5.79 5.84 7.76 7.71 10.36 10.22 11.47 11.35 11.03 10.98 6.32 6.26 22.59 22.63 8.83 8.80

No specular input ✓ ✓ 1.64 1.63 7.09 7.06 7.78 7.77 5.53 5.55 8.47 8.34 11.23 11.22 14.53 14.59 10.71 10.75 19.04 18.83 26.75 26.71 11.28 11.25

No global observation ✓ ✓ 1.50 1.50 13.18 15.12 8.47 8.50 5.76 5.74 7.50 7.51 12.76 12.68 12.50 12.54 16.81 20.20 5.40 5.44 25.12 25.34 10.90 11.46

No supervision ✓ ✓ 1.61 1.58 5.30 5.97 6.25 10.91 5.53 8.10 8.18 8.70 10.08 10.16 11.67 14.29 11.20 20.27 6.03 6.72 22.48 32.12 8.83 11.88

All-stage supervision ✓ ✓ ★ 1.65 1.63 5.50 5.55 6.20 6.16 5.56 5.55 8.12 8.12 10.18 10.22 11.34 11.54 12.98 13.37 9.56 9.80 24.05 23.90 9.51 9.58

buddha goblet reading cow harvest avg.ball cat pot1 bear pot2
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READING (early-stage vs. no/all-stage supervision) COW (early-stage vs. no/all-stage supervision)

Figure 5. Convergence analysis with different types of weak supervision. We show learning curves of mean angular errors (top) and
loss values (bottom) for READING and COW, profiled by distributions of 11 rounds run (colored region) and medians (solid line). Compared
to the proposed early-stage supervision (red), using no/all-stage supervision (green/blue) is often unstable or inaccurate. Vertical lines at
t = 50 indicate termination of early-stage supervision. See the supplementary material for results of other scenes. Best viewed in color.

1x1 Conv with more layers and channels (i.e., they use chan-
nels of 4096 and 2048 for the five internal layers). Since our
method only needs to learn reflectance properties of a single
test scene, our PSNet requires fewer layers and channels.
More importantly, we additionally introduce IRNet, which
allows direct unsupervised learning on test data.

There are some other early studies on photometric stereo
using (shallow) neural networks. These methods work un-
der more restricted conditions, e.g., assuming pre-training
by a calibration sphere of the same material with target
objects (Iwahori et al., 1993; 1995), special image captur-
ing setups (Iwahori et al., 2002; Ding et al., 2009), or the
Lambertian surfaces (Cheng, 2006; Elizondo et al., 2008),
whereas none of them is required by our method.

Currently, our method has limitations of a slow running time
(e.g., 1 hour to do 1000 SGD iterations for each scene) and
limited performances to complex scenes (e.g., HARVEST).
However, several studies (Akiba et al., 2017; You et al.,
2017; Goyal et al., 2017) show fast training of CNNs using
extremely large minibatches and tuned scheduling of SGD
step-sizes. Since our dense prediction method can use at
most a large minibatch ofM×H×W pixel samples, the use

of such acceleration schemes may improve the convergence
speed. Also, a pre-training approach similar to (Santo et al.,
2017) is still feasible for our method, which will accelerate
the convergence and will also increase accuracy to complex
scenes (with the loss of permutation invariance). Thorough
analyses in such directions are left as our future work.

6. Conclusions
In this paper, we have presented a novel CNN architecture
for photometric stereo. The proposed unsupervised learning
approach bridges a gap between existing supervised neural
network methods and many other classical physics-based
unsupervised methods. Consequently, our method can learn
complicated BRDFs by leveraging both powerful express-
ibility of deep neural networks and physical reflectance
properties known by past studies, achieving the state-of-
the-art performance in an unsupervised fashion just like
classical methods. We also hope that our idea of physics-
based unsupervised learning stimulates further research on
tasks that lack of ground truth data for training, because
even so the physics is everywhere in the real world, which
will provide strong clues for the hidden data we desire.
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