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Abstract

We present an accurate and efficient stereo matching
method using locally shared labels, a new labeling scheme
that enables spatial propagation in MRF inference using
graph cuts. They give each pixel and region a set of can-
didate disparity labels, which are randomly initialized, spa-
tially propagated, and refined for continuous disparity es-
timation. We cast the selection and propagation of locally-
defined disparity labels as fusion-based energy minimiza-
tion. The joint use of graph cuts and locally shared labels
has advantages over previous approaches based on fusion
moves or belief propagation; it produces submodular moves
deriving a subproblem optimality; enables powerful ran-
domized search; helps to find good smooth, locally planar
disparity maps, which are reasonable for natural scenes;
allows parallel computation of both unary and pairwise
costs. Our method is evaluated using the Middlebury stereo
benchmark and achieves first place in sub-pixel accuracy.

1. Introduction
Recent years have seen significant progress in accu-

racy of stereo vision. One of the breakthroughs is the use
of 3D labels [4, 3, 18, 19, 9]; by estimating a local 3D
disparity plane d = apx+ bpy + cp for each pixel, accu-
rate photo-consistency is measured between matching pix-
els even with large matching windows. While stereo with
standard 1D discrete disparity labels [22, 15, 14, 6] can be
directly solved by discrete optimizers such as graph cuts
(GC) [16, 5] and belief propagation (BP) [26, 7], such ap-
proaches cannot be directly used for continuous 3D labels
due to the huge (infinite) label space (a, b, c)∈R3.

Recent successful methods [4, 3, 18] use PatchMatch [1,
2] to efficiently infer correct 3D planes using spatial propa-
gation; each pixel’s candidate plane is, in raster-scan order,
refined and then propagated to next pixels. Further in [3],
this sequential algorithm is combined with BP yielding
an efficient optimizer PMBP for pairwise Markov random
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fields (MRFs) [8]. In terms of MRF optimization, however,
BP is considered a sequential optimizer, which improves
each node individually keeping others conditioned at the
current state. In contrast, GC improves all nodes simultane-
ously by accounting for interactions across nodes, and this
global property helps optimization avoid local minima [20,
25]. Nevertheless, incorporating spatial propagation into
GC-based optimization is not straightforward, because in-
ference using GC proceeds rather all-nodes-simultaneously,
not one-by-one-sequentially like PatchMatch and BP.

In this paper, we introduce a new labeling scheme, lo-
cally shared labels, that enables spatial propagation in
fusion-based optimization using GC [17]. The locally
shared labels define, for each pixel or region, its compact
and local discrete label space that is shared among neigh-
boring pixels/regions. By using locally shared labels we
generate a number of disparity maps (so-called proposals in
the literature [17]), and fuse and refine them in an iterative
manner (see Fig. 1). For natural scenes that often exhibit lo-
cally planar structures, the joint use of locally shared labels
and GC has a useful property; it allows multiple pixels in
a local region to be assigned the same disparity plane by a
single min-cut in order to find smooth solutions and to avoid
trapped at a bad local minima.

The advantages of our method are fourfold. First, our
locally shared labels produce submodular moves that guar-
antee the optimal labeling at each min-cut (subproblem op-
timal), which in contrast is not guaranteed in general fusion
moves [17]. Second, this optimality property and spatial
propagation allow randomized search, rather than employ
external methods to generate plausible initial proposals as
done in previous fusion approaches [17, 25, 19], which may
limit the possible solutions. Third, our method achieves
greater accuracy than BP [3] thanks to the good properties
of GC and locally shared labels. Finally, unlike PMBP [3]
the computation of both unary and pairwise costs can be
performed in a parallel manner1, which is the most expen-
sive part in practice. With the proposed approach, accurate

1Although BP is usually GPU-parallelizable, PMBP differs from BP’s
standard settings in that it defines label space uniquely and distinctively for
each pixel and propagate it; both make parallelization indeed non-trivial.
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random 1 iteration 2 iterations 3 iterations 10 iterations post-processing
Figure 1. Process of our stereo matching, showing disparity and 0.5-pixel error maps for Teddy. In our framework, we start with random
disparities that are represented by per-pixel 3D planes (leftmost). We then alternately propagate local planes using GC and refine them
(middles). Finally, the resulting disparity map is further refined at post-processing stage based on left-right consistency check (rightmost).

stereo matching can be efficiently computed with a GPU
implementation as we will see in the experiment.

2. Related works
MRF stereo methods can be categorized into three ap-

proaches: discrete stereo, segment-based stereo, and con-
tinuous stereo.

Discrete stereo [22, 15, 14, 6] formulates stereo match-
ing as a discrete multi-labeling problem, where each pixel
is individually assigned one of pre-defined discrete dispar-
ity values. For this problem, many powerful discrete op-
timizers, such as BP [26, 7], TRW [12], and GC [16, 5],
can be directly used. Successful results are shown using
GC with expansion moves [6, 20]. In expansion moves, the
multi-labeling problem is reduced to a sequence of binary-
labeling problems, each of which can be exactly solved by
GC, if only pairwise potentials ψ meet the following sub-
modularity of expansion moves [13, 6]:

ψ(α, α) + ψ(β, γ) ≤ ψ(β, α) + ψ(α, γ). (1)

Segment-based stereo [21, 10, 11, 23] assigns a 3D dis-
parity plane for each of over-segmented image regions.
The candidate planes are generated by fitting planes to a
roughly estimated disparity map, and then the optimal as-
signment of the planes is estimated by, e.g., GC with expan-
sion moves [6, 10] or BP [7, 11]. Although this approach
yields continuous-valued disparities, it strictly limits the re-
construction to a piecewise planar representation. Also, re-
sults are subject to the quality of the segmentation.

The last group, to which our method belongs, is contin-
uous stereo [25, 4, 3, 19, 18, 9], where each pixel is as-
signed a distinct continuous disparity value. Some meth-
ods [25, 19] use fusion moves [17], an operation that com-
bines two disparity maps to make a better one (binary fu-
sion) by solving a non-submodular binary-labeling prob-
lem using QPBO-GC [13, 17]. In this approach, a number
of continuous-valued disparity maps (or proposals) are first

generated by other external methods (e.g., segment-based
stereo [25]), which are then combined as a sequence of bi-
nary fusions. Our method is also based on fusion moves
but generates proposals using locally shared labels, which
enable spatial propagations of local candidate planes and,
more importantly, they make fusion moves submodular, i.e.,
each binary fusion is optimally solved via GC (subproblem
optimal). Our method only requires randomized initial pro-
posals instead of those generated by external methods. A
stereo method by Bleyer et al. [4] proposes accurate photo-
consistency measures using 3D disparity planes that are in-
ferred by PatchMatch [1, 2]. Heise et al. [9] incorporates
Huber regularization into [4] using convex optimization.
Besse et al. [3] point out a close relationship between Patch-
Match and BP and present a unified method called Patch-
Match BP (PMBP) for pairwise continuous MRFs. PMBP
is probably the closest approach to ours in spirit, but we use
GC instead of BP for the inference. Therefore, our method
is able to take advantage of better convergence of GC [20]
for achieving greater accuracy. In addition, our method al-
lows parallel computation of both unary and pairwise costs.

3. Proposed method
This section describes the proposed stereo matching

method. Given two input images IL and IR, our purpose
is to estimate disparity maps of both images.

3.1. Formulation

We use a pairwise MRF formulation by following con-
ventional stereo matching methods [19, 22, 15, 14, 6]. In
the MRF framework, each pixel p ∈ (P ⊂ Z2) is assigned
a value in some disparity space S, and one seeks a disparity
map f for every pixel fp = f(p) : P → S that minimizes

E(f) =
∑
p∈P

φp(fp) + λ
∑
p∈P

∑
q∈N (p)

ψpq(fp, fq). (2)

The first term, called the data term or unary term, mea-
sures the photo-consistency between matching pixels. The



disparity fp defines a warp from a pixel p in one image to
its correspondence in the other image. The second term is
called the smoothness term or pairwise term, which penal-
izes discontinuity of disparities of a pixel p and its neigh-
boring pixels q ∈ N (p). We define these terms as below.
Data term. To measure photo-consistencies, we use a
data term that has been recently proposed by [4]. Here,
each pixel p’s disparity dp is over-parameterized by a 3D
plane dp = apx+ bpy + cp to avoid the frontal-parallel
bias. Therefore, the objective becomes to seek a dispar-
ity plane fp = (ap, bp, cp)

T ∈ S for every pixel p in the left
and right images such that disparity map f minimizes the
energy function E(f) of Eq. (2). Using this p’s disparity
plane fp, a pixel q = (qx, qy)T in the left image is warped
to a new location in the right image by a warping wfp as

wfp(q) = q − (apqx + bpqy + cp, 0)T . (3)

The data term of p in the left image is therefore defined as

φp(fp) =
∑
q∈Wp

ωpq ρ
(
q, wfp(q)

)
. (4)

Here, Wp is a square window centered at p. The weight ωpq
implements the adaptive support window proposed in [27],
and is defined as

ωpq = e−‖IL(p)−IL(q)‖1/γ , (5)

where γ is a user-defined parameter, and ‖ · ‖1 represents
the `1-norm. The function ρ(q, wfp(q)) measures the pixel
dissimilarity between q and its matching point wfp(q) as

ρ(q, wfp(q))=(1−α) min(‖IL(q)−IR(wfp(q))‖1, τcol)
+α min(‖∇xIL(q)−∇xIR(wfp(q))‖1, τgrad), (6)

where ∇xI represents the x-component of the gray-value
gradient of image I , and α is a factor that balances the
weights of color and gradient terms. The two terms are
truncated by τcol and τgrad to increase the robustness for
occluded regions. We use linear interpolation to compute
IR(wfp(q)). When the data term is defined on the right im-
age, we swap IL and IR in Eqs. (5) and (6), and add the
disparity value in Eq. (3).
Smoothness term. For the smoothness term, we use
a curvature-based, second-order smooth regularization
term [19] defined as

ψpq(fp, fq) = max (ωpq, ε) min(ψ̄pq(fp, fq), τdis), (7)

where ε is a small constant value that gives a lower bound to
the weight ωpq for increasing the robustness. The function
ψ̄pq(fp, fq) penalizes the discontinuity between fp and fq
in terms of disparity as

ψ̄pq(fp, fq)= |dp(fp)−dp(fq)|+|dq(fq)−dq(fp)|, (8)

where dp(fq) = aqpx + bqpy + cq . ψ̄pq(fp, fq) is trun-
cated by τdis to allow sharp jumps in disparity at depth
edges. The term ψpq(fp, fq) satisfies the submodularity of
Eq. (1) for taking advantage of GC. Visualization and proof
for submodularity of this term are shown supplementary.

3.2. Locally shared labels

As the main contribution of this paper, we introduce
locally shared labels for efficiently optimizing continuous
MRFs. The locally shared labels are the combination of
pixel and region labels, in which label spaces are shared
among neighbors, and they enable per-pixel estimation of
continuous solutions as well as fast propagations.
Pixel and region labels. Pixel labels are a small number
(say,K) of discrete disparity labels (or candidate labels) de-
fined at each pixel p, which we refer to as a pixel label set,
Lp = {l(0)p , l

(1)
p , . . . , l

(K−1)
p }, l(i)p = (a, b, c)T ∈ S . The

pixel label sets are shared among neighboring pixels. In
addition, we define region labels that give additional candi-
date labels for accelerating spatial propagation and avoid-
ing stuck at a local minima. We use a regular grid structure
for regions, which are indexed by the region coordinates
r ∈ (R ⊂ Z2) like the pixel coordinates. Region labels
define for a region r a set of KR candidate labels Rr ⊂ S,
which we call a region label set. Each label set Rr gives
candidate labels for pixels in the region r and pixels in the
neighboring regions as well, i.e., Rr is also shared among
neighboring regions just like pixel labels.

During the inference, for each pixel p, our method
chooses the best candidate label fp from the union of pixel
and region label sets that are shared for the pixel p:

Cp = Lp ∪

(⋃
q

Lq

)
∪Rr ∪

(⋃
s

Rs

)
, (9)

where q, r, s represent p’s neighboring pixels, the region
that p belongs to, and the neighboring regions to r, respec-
tively. By sharing local label sets among neighbors, good
candidate labels are spatially propagated to nearby pixels.
The concept of pixel and region labels is illustrated in Fig. 2.
Proposal generation for fusion. During the inference,
we repeatedly seek the best labeling f (t) for the current lo-
cal label sets {Lp} and {Rr}, and refine them. The for-
mer part, i.e., the selection and propagation of candidate
labels in {Lp} and {Rr}, is cast as fusion-based energy
minimization [17], as described in the rest of this section.
Consider the essential function of fusion is to make a good
solution f by fusing a number of proposal disparity maps
{g(0), g(1), . . . , g(n−1)}, where at each pixel fp is assigned
one of n disparity labels {g(0)p , g

(1)
p , . . . , g

(n−1)
p }. In our

method, we build a special form of proposals from {Lp}
and {Rr} in a manner that achieves the propagation of pixel
and region labels. To make proposals from pixel labels, we
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Figure 2. Illustrations of pixel and region labels, and proposal construction. For simplicity, they are illustrated by 1D images with the blue
nodes representing pixels. The boxes Lp and Rr represent a set of candidate disparity labels given for the pixel p and pixels in the region
r, respectively. The horizontal red lines signify that the local label sets {Lp} and {Rr} are shared between neighbors. The local label sets
are aligned so as to make proposal disparity maps g(j) for fusion. In particular, proposal construction of pixel labels is illustrated for a 2D
image in (c) indicating that, in each proposal g(j), candidate labels defined at blue pixels are shared between red neighbors.

copy each candidate label l(i)p ∈ Lp to the j-th proposal
g(j) by setting g(j)q ← l

(i)
p , where q is the nine neighbor-

ing pixels around and including p (i.e., the pixels where the
candidate label l(i)p is shared), and j is given as

j = K (4 (py mod 4) + (px mod 4)) + i. (10)

Here, mod is the modulo operation, and px and py
are p’s coordinates specified as px ∈ [0,width− 1] and
py ∈ [0,height− 1]. Figure 2a illustrates this construction
for the case of a 1D image with K = 1 (i.e., Lp = {l(0)p })
for simplicity, where a horizontal layer of candidate labels
at vertical position j represents a proposal g(j). Figure 2c
illustrates for a 2D image showing that candidate labels at
blue pixels are shared among red neighbors in each pro-
posal g(j). The integer 4 in Eq. (10) means that, in each
proposal, we leave a “gap” (shown as gray pixels in Fig. 2c
that represent no candidate labels) between each “shared re-
gion” (see Fig. 2c) for ensuring submodularity, which we
describe later. We assign an infinite unary cost to those in-
valid labels to ensure that such labels are avoided during the
inference. For region labels, proposals are constructed in
the same manner with pixel labels by regarding a region as
a pixel as shown in Fig. 2b. The fusion is performed using
the proposals generated from both pixel and region labels.

This particular form of proposal construction guarantees
that a binary fusion of an arbitrary solution f and any of
the proposals g = g(j) is submodular, thus it is exactly
solved via GC. To show this, we give an intuitive expla-
nation here due to the limited space. A complete proof is in
supplementary. Let’s consider a simple case where gp takes
the same value for all pixels p. A fusion move with such
globally-constant g is called an expansion move [6], which
is submodular if pairwise terms ψpq satisfy Eq. (1). Seeing
Fig. 2c, our proposal g is made locally-constant by “shared
regions”, thereby a fusion move with our proposals is, vir-
tually, many mutually-disjoint local-alpha-expansions with
different “alpha” for each shared region. Therefore the con-
dition for deriving submodularity is the same with Eq. (1),
which holds for our smoothness term ψpq of Eq. (7). With

Algorithm 1 Overview of optimization procedure
1: Initialize {Lp} and {Rr} randomly.
2: repeat
3: ♦ Optimize labeling f for current local label sets:

f (t) = argminE(f) with local label sets {Lp} and {Rr}
4: ♦ Refine local label sets {Lp} and {Rr}:
5: for all pixels p ∈ P do
6: C̃p ← Cp with perturbation.
7: Lp ← best K−1 candidate labels c ∈ (Lp∪C̃p)\{f (t)

p }
that minimize Ep(c|f (t))

8: Lp ← Lp ∪ {f (t)
p }

9: end for
10: for all regions r ∈ R do
11: Rr ← random KR candidate labels from {f (t)

p |p in r}
12: end for
13: until convergence

this submodularity guarantee, we only need to use a stan-
dard GC [16, 5] instead of employing expensive QPBO-
GC [13] used in usual fusion approaches [17, 19, 25].

In addition, this proposal generation helps obtain smooth
solutions because multiple pixels in shared regions are al-
lowed to move-at-once to the same candidate label at one
binary fusion. This effect becomes more significant with
region labels because of their large shared regions. In fact,
region labels make the key factor in our algorithm for both
efficiency and accuracy as we will see in the experiment.

3.3. Optimization

The overview of our optimization procedure is summa-
rized in Algorithm 1. As discussed in the previous section,
our optimization uses an iterative framework, where we al-
ternately optimize the labeling f with given local label sets
{Lp} and {Rr}, and refine the local label sets {Lp} and
{Rr} locally with the labeling f fixed.

Our optimization begins with randomly initializing {Lp}
and {Rr}. To sample the allowed solution space evenly,
we take the initialization strategy described in [4]. For
l
(i)
p ∈ Lp at p=(px, py)T , we select a random disparity z0



in the allowed disparity range [0,dispmax]. Then, a ran-
dom unit vector n=(nx, ny, nz)

T and z0 are converted to
the plane representation by ap = −nx/nz , bp = −ny/nz ,
and cp = −(nxpx + nypy + nzz0)/nz . For the region la-
bel sets {Rr}, we randomly pick KR pixels in each region,
and copy the candidate label l(0)p ∈ Lp of the randomly cho-
sen pixels p to the region label set.

At line 3 of Algorithm 1, we optimize the labeling f by
the procedure illustrated in the previous section. It can be
approximately solved by sequentially fusing proposals con-
structed from pixel and region label sets {Lp} and {Rr}.

In lines 5–9, we refine the pixel label sets {Lp}. At each
pixel p, we first randomly perturb p’s candidate labels Cp of
Eq. (9) and obtain C̃p. As the refined Lp, we select the best
K candidate labels from the union of C̃p and the current Lp
that minimize the following local energy at the pixel p:

Ep(s|f (t)) = φp(s) +
∑

q∈N (p)

ψpq(s, f
(t)
q ) , s ∈ S. (11)

Here, the refined Lp is forced to contain the current candi-
date label f (t)p to ensure that, in the next iteration, the so-
lution f (t+1) can stay at f (t), thereby the energy does not
increase, i.e., E(f (t)) ≥ E(f (t+1)) holds throughout the it-
erations. Perturbation is implemented as described in [4].
Namely, each candidate label (a, b, c)T ∈ Cp is converted
to disparity d and normal vector n. We then add a random
disparity ∆d ∈ [−rd, rd] and a random unit vector ∆n to
them, respectively, as d′ = dp + ∆d and n′ = n+ rn∆n.
Finally, d′ and n′/|n′| are converted to the plane represen-
tation (a′, b′, c′)T ∈ C̃p as a perturbed candidate label. The
values rd and rn define an allowed change of planes. We
start by setting rd ← dispmax/2 and rn ← 1. After each
iteration, we update them by rd ← rd/2 and rn ← rn/2.

In lines 10–12, we update the region label sets {Rr}. As
done in the initialization, we again take a random-pick-up
scheme. This time, the current solution f (t)p of randomly
chosen pixels p is taken as the region labels.

Finally, after the whole process, we perform the post-
processing using left-right consistency check and median
filtering as described in [4] for further improving the results.
This step is widely employed in recent methods [4, 3, 18, 9].

4. Experiments
In the experiments, we first evaluate our method on the

Middlebury benchmark. We further assess the effect of re-
gion labels, and also compare with the PMBP method [3]
that is closely related to our approach.
Setting. We use the following settings throughout the ex-
periments. We use a PC with a Xeon CPU (2.53 GHz ×
4 cores) and NVIDIA GeForce GTX-295 GPU (only one
of two GPU cores is used here). The parameters of our
data term are set as {τcol, τgrad, γ, α} = {10, 2, 10, 0.9}

as specified in [4]. The size of supporting windows is set
to 41× 41, which is the same setting as PMBP [3]. For the
smoothness term, we use {λ, τdis, ε} = {20, 1, 0.01} and
eight neighbors forN . For optimization, three-layer locally
shared labels are used: pixel labels with K = 2, region la-
bels of size 5 × 5 with KR = 2, and also regions labels of
size 25× 25 with KR = 2, and a GC implementation of [5]
is used. We iterate twice for each proposal in fusion stage,
and iterate the outer-loop process ten times. The compu-
tation of unary costs is performed in parallel on GPU, and
pairwise costs are computed on four CPU cores.

4.1. Evaluation on the Middlebury benchmark

We show in Tab. 1 selected rankings on the Middle-
bury stereo benchmark for 0.5-pixel accuracy. Our method
achieves the current best average rank (3.5) and bad-pixel-
rate (6.63%) amongst more than 155 stereo methods. Even
without post-processing, our method still outperforms the
other methods in average rank, despite that methods [4, 3,
18, 9] use the post-processing. Compared with closely re-
lated approaches (PMBP [3] and PatchMatch stereo [4]),
which are ranked seventh and ninth in Tab. 1, although
results of PMBP for Cones are slightly better than ours,
our method consistently outperforms the two methods in
the other evaluations. We summarize the results of our
method in Fig. 3. We omit the results of Tsukuba, because
its ground truth is quantized to integer disparities; thus we
consider that not to be appropriate for sub-pixel evaluation.
More results including failures are shown in supplementary.

4.2. Effect of region labels

To observe the effect of region labels, we assess the per-
formance using three different settings: (1) only pixel labels
with K = 6; (2) pixel labels with K = 4 and region labels
of size 5 × 5 with KR = 2; (3) pixel labels with K = 2,
region labels of size 5 × 5 with KR = 2, and also regions
labels of size 25 × 25 with KR = 2 (the default setting for
our method described above). Among the three settings, the
number of candidate labels given for each pixel (i.e., |Cp|)
is kept consistent. We use λ = 40 but keep the other param-
eters as default. Using these settings, we observe the per-
formance variations by estimating the disparities of only the
left image of the Cloth1 dataset without the post-processing.

In Fig. 4, we show the results of the three cases after ten
iterations. Also, plots in Figs. 5a-c show the energy varia-
tions of the energy function, data term, and smoothness term
after each iteration, respectively. Figure 5a shows that re-
gion labels play a critical role in minimizing energies. Fig-
ures 5b and 5c indicate that region labels effectively reduce
the energies of both the data and smoothness terms, which
shows the contribution of region labels for fast propagation
of good candidate labels as we intended. On the other hand,
if only pixel labels are used, the solution is trapped at a bad



Table 1. Middlebury benchmark for 0.5-pixel accuracy. Our method achieves the current best average rank 3.5. In all, results are evaluated
for all pixels where the ground truth is given, while only for non-occluded pixels in nonocc, and around depth discontinuities in disc.

Image Raw result After post-processing Ground truth 0.5-pixel error map
Figure 3. Our results on the Middlebury benchmark. From left to right, one of the input images, our results without post-processing, after
post-processing, the ground truth, and 0.5-pixel error maps of the results after post-processing are shown. In the error maps, white and
black pixels indicate correct and incorrect disparities, while gray indicates incorrect but occluded pixels.

local minima producing a noisy result as in Fig. 4b. Al-
though the use of the large region labels does not make a
significant difference in the converged energy values, the
difference is obvious if we see Figs. 4c and 4d.

4.3. Comparison with PMBP [3]

We compare our method with PMBP [3] that is the clos-
est method to ours. For a fair comparison, we use four
neighbors for N in Eq. (2), which is the same setting as
PMBP. For a comparable smoothness weight with the de-
fault setting (eight-neighbor N ), we use λ = 40 and keep
the other parameters as default. For PMBP, we use the same
model as ours; the only difference from the original PMBP
is the smoothness term, which does not satisfy the submod-
ularity of Eq. (1). PMBP also defines K candidate labels
for each pixel, for which we set K = 1 and K = 5 (origi-

nal paper uses K = 5). We show the comparison using the
Cones dataset by estimating the disparity map of only the
left image without the post-processing.

Figures 6a-c show the temporal transition of the energy
values in the full and zoomed scales, and the 0.5-pixel error
rates, respectively. We show the performance of our method
using its GPU and CPU (1 or 4 CPU-cores) implementa-
tions. For PMBP, we also implemented the unary cost com-
putation on GPU, but it became rather slow, possibly due to
the overhead of data transfer. Efficient GPU implementa-
tions for PMBP are not available in literature2. Therefore,

2 GPU-parallelization schemes of BP are not directly applicable due to
PMBP’s unique settings. The “jump flooding” used in the original Patch-
Match [1] reports 7x speed-ups by GPU. However, because it propagates
candidate labels to distant pixels, it is not applicable to PMBP that must
propagate messages to neighbors, and is not as efficient as our 100x, either.



(a) Cloth1 (b) Only pixel labels (c) Pixel and region
(5× 5) labels

(d) Pixel and region
(5× 5 and 25× 25) labels

(e) Ground truth

Figure 4. Visual effect of region labels. (a) One of input images. (b) Using only pixel labels yields a noisy result, which is improved by (c)
adding region labels. (d) Large region labels are effective for occluded regions. These are all raw results without the post-processing.
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Figure 5. Effect of region labels in minimizing energies. From left to right, energy transitions of the energy function, data term, and
smoothness term w.r.t. the number of iterations are shown. Region labels play a critical role in reducing the energies.

the plots show PMBP results that use a single CPU core.
Figures 6a and 6b show that PMBP works much faster than
our CPU implementation; however, our GPU implementa-
tion shows significantly faster convergence. Furthermore,
our method reaches the better solution than that of PMBP
in both energy values and error rates3. At around 4000[sec]
of Figs. 6b and 6c, the solution obtained by our CPU imple-
mentation marked the lower error rate than that of PMBP
in spite of its higher energy. Figure 7 shows the result-
ing disparity maps obtained by our method and PMBP with
K = 5. Our result shows greater accuracy around the edge
regions.

5. Conclusions

In this paper, we presented an accurate and efficient
stereo matching method for continuous disparity estima-
tion. Unlike previous approaches that use fusion [17,
19, 25], our method is subproblem optimal and only re-
quires randomized initial proposals. By comparing with
a recent continuous MRF stereo method, PMBP [3], our
method showed an advantage in efficiency and comparable
or greater accuracy. The use of a GC-based optimizer makes
our method advantageous.

3The CPU implementation of our method also reaches almost the same
energy and error rate after about 42000[sec] by a single core, 9150[sec]
by four cores.

We believe that our optimization method can be applied
for more general corresponding field estimation such as op-
tical flow, but we leave it for our future work. We also
believe that some occlusion handling schemes based on
GC optimization [14, 15, 24] can be incorporated into our
framework, which may yield even greater accuracy.
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