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Synonyms

Stereo Matching, Binocular Stereo Vision

Related Concepts

IMultiview Stereo; IWide Baseline Match-
ing; IDense Reconstruction; IEpipolar Geom-
etry IPhoto-Consistency; IOcclusion Handling;
ISubpixel Estimation;

Definition

Binocular stereo refers to the task of recovering
depths of a static scene using a pair of overlap-
ping images captured from different viewpoints.
Binocular stereo systems usually use two identical
parallel cameras that are horizontally separated
by a certain distance, referred to as the baseline.
The task of binocular stereo amounts to finding
dense pixel correspondences between the image
pair along horizontal scan-lines (called epipolar
lines) or estimating the disparity for each pixel of

the stereo images. The outcome of binocular stereo
takes a form of a depth map that can be computed
from disparity given the baseline and focal length
of a stereo system or instead a disparity map itself.

Background

Binocular stereo is one of the oldest topics in com-
puter vision. Similar to the mechanism of human
depth perception, the principle of binocular stereo
is triangulation, which is mathematically formu-
lated based on the epipolar geometry. However,
due to ambiguous pixel correspondences, binocu-
lar stereo typically becomes ill-posed when scenes
have no textures or show repetitive patterns.

Wide baseline stereo refers to a particular set-
ting of binocular stereo where the two cameras are
widely separated. This leads to a more difficult
task because of larger disparity ranges, lesser over-
laps between image pairs, and a higher likelihood
of occlusions.

Occlusion is an inevitable problem in binocular
stereo, which occurs when a part of an object in
one view is not present in the other view because it
is occluded by another object or is out of the field-
of-view in the other view. Since occluded regions
have no true visual correspondence, they produce
incorrect depth estimates unless properly handled.

Binocular stereo can be seen as special or
simplified cases of other related computer vision
tasks. For example, multiview stereo uses two or
more images captured from calibrated but possibly
irregular viewpoints. In principle, multiview stereo
can achieve higher accuracy than binocular stereo,
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because the use of multiple images can reduce
matching ambiguities and can also lead to fewer
occluded surfaces (as each surface point has a bet-
ter chance of being visible from at least two views).
However, multiview stereo is a more complicated
task, because images from irregular viewpoints
may contain low-overlapping image pairs that have
to be excluded from matching via viewpoint selec-
tion. Also, surface patches often undergo more
significant distortions across views, which makes
accurate evaluations of patch similarity difficult.

Optical flow is also a visual correspondence
estimation task between two images, but involves
estimating more general motions of a dynamic
scene between two different temporal-frame images
captured by a possibly-moving monocular cam-
era. While pixel motions in binocular stereo (dis-
parities) are induced by factors of object posi-
tions and the left-to-right camera motion, optical
flow involves more complicated motion factors of
object positions, an unknown camera motion, and
dynamic object movements. Because of this com-
plexity, estimation of pixel motions in optical flow
requires a 2D search space, which is wider than 1D
search spaces for disparities and depths in binocu-
lar and multiview stereo. The presence of dynamic
object movements also makes the occlusion rea-
soning more complicated than stereo.

Binocular stereo can thus be considered as
the most fundamental dense visual correspondence
estimation task, which is built upon notions from
a wide range of computer vision areas such as cam-
era calibration, image filtering, and combinatorial
optimization as explained in following sections.

Theory and Application

We first discuss the mathematical foundation of
binocular stereo based on the epipolar geometry.
We then review classical methodologies of binoc-
ular stereo, and also review recent learning based
methodologies using neural networks.

a) Mathematical Principle
In this section, we explain how a 3D point can
be triangulated from a pair of corresponding pix-
els, using a typical rectified setting of binocular
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Binocular Stereo, Fig. 1 Rectified setting of binocular
stereo where two parallel cameras are horizontally placed.

stereo shown in Fig. 1. Here, two identical pin-
hole cameras, both directed along the z axis in the
3D world coordinate system, are positioned at the
origin (0, 0, 0)T (left viewpoint) and a horizontally
shifted place (b, 0, 0)T (right viewpoint) where b is
baseline. Both cameras are calibrated and have the
following intrinsic parameter matrix

K =

f 0 cu
0 f cv
0 0 1

 , (1)

where (cu, cv) is the principal point and f is the
focal length. Note that in reality it is difficult to
setup such an ideally rectified stereo capturing sys-
tem. However, given a calibrated stereo system
(i.e., the relative pose and intrinsic parameters of
the two cameras are known), we can transform
unrectified stereo image pairs into rectified ones
using a technique of stereo image rectification.

In this rectified setting, suppose there is a sur-
face shown at a pixel p = (u, v)T in the left view
image (reference image). Its unknown 3D coordi-
nate x = (x, y, z)T in question can be represented
as

x = K−1(zp̄), (2)

where p̄ is the homogeneous coordinate of p. This
3D point x can be projected to the right view
image at the following 2D location p′ = (u′, v′)T .

p′ = π(K
[
R t

]
x̄). (3)
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Here, R is the identity rotation matrix, t =
(−b, 0, 0)T is the translation representing hori-
zontal baseline, and π is a function π(x, y, z) =
(x/z, y/z)T . Thus, by plugging Eq. 2 into Eq. 3, we
obtain an expression for the point corresponding
to p in the right image as

p′ = p−
[
fb/z

0

]
. (4)

This result shows that for each pixel p in the
left image, its correspondence p′ in the right image
should be found at a horizontally-shifted position
of p by shifting the pixel by the following amount
to the left.

d = fb/z. (5)

This horizontal shifting amount d is called dispar-
ity. As shown by Eq. 5, once we obtain a disparity d
for a pixel (or obtain its correspondence p′), we
can obtain its depth z from the disparity given
the baseline b and focal length f of the considered
stereo system.

b) Classical Methodologies
Scharstein and Szeliski [11] provide a well known
taxonomy of classical stereo algorithms based on
the following four steps of algorithms: matching
cost computation (photo-consistency), cost aggre-
gation, disparity computation and optimization,
and disparity refinement. In this section, we dis-
cuss classical stereo algorithms in terms of design
and minimization of the following objective func-
tion

E(D) =
∑
p

Cp(Dp) +R(D). (6)

Here, D represents a disparity map that we esti-
mate for an input stereo image pair. Cp(Dp) is
a matching-cost term that evaluates a given dis-
parity estimate Dp for a pixel p by measuring
photo-consistencies between the two images. R(D)
is a regularization term that enforces some notion
of smoothness on the disparity map D.

The disparity map D often takes a discrete
variable form D ∈ {d1, d2, ..., dK}H×W , and thus
the objective function E(D) is optimized using
discrete (combinatorial) optimization algorithms.
This is because objective functions of stereo are

usually highly non-convex and continuous opti-
mization methods can be easily trapped at poor
local minima.

Stereo algorithms can be broadly divided into
local and global methods. Local methods rely only
on the matching-cost term and minimize the objec-
tive function by a simple winner-takes-all strategy.
Global methods use a more complicated objective
function with explicit regularizers, which involve
computationally more expensive optimization pro-
cedures. Below we review important components
and techniques of those local and global stereo
methods.

Photo-consistency. As a critical component of
the matching-cost term, photo-consistency ρ(p,p′)
is a scalar function that evaluates dissimilarity
between two pixels or image patches at respec-
tive locations p and p′ in a given image pair
{I, I′}. The simplest photo-consistency measure is
SAD (sum of absolute difference) that evaluates
ρ(p,p′) = |Ip−I ′p′ |, but directly comparing image
intensities is not robust to illumination changes.
As a more robust measure, normalized cross cor-
relation (NCC) is used to compare two image
patches. Zabih and Woodfill [18] propose the CEN-
SUS transform that encodes an image patch into
a binary feature vector, whose dissimilarity can be
efficiently computed as the Hamming distance.

Cost aggregation. Cost aggregation refers to a
technique to refine noisy raw photo-consistency
measures ρ(p,p′) by summing them over pixels in
a patch around p as

Cp(d) =
∑
s∈Wp

ωpsρ(s, s′d). (7)

Here, Wp is a support window centered at p in
the reference image, ωps is some weight function,
and s′d = s − (d, 0)T . Cost aggregation is often
referred to as cost volume filtering, because if we
precompute raw matching costs ρ(p,p′d) for all
pixels p and for all pre-defined disparities d ∈
{d1, d2, ..., dK} as a 3D cost volume V (p, d), then
cost aggregation is carried out by applying an
image filter on 2D cost map slices Vd(p) = V (p, d)
with a filter kernel of ωps. Although a naive imple-
mentation of cost aggregation requires O(|Wp|) of
computations for each term Cp(d), the notion of
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Binocular Stereo, Fig. 2 Adaptive support windows. For (a) an support window with (b) depth boundaries, the adaptive
window method [17] computes (e) bilateral support weights by combining (c) spatial weights and (d) color-based weights.

cost volume filtering can allow O(1) of computa-
tions when using a constant-time filter (e.g., a box
filter ωps = 1).

Cost aggregation relies on an assumption that
the support pixels s in a window Wp have the
same disparity. However, as discussed in [3], this
assumption often breaks down in two cases: 1)
when there are depth boundaries in the window;
2) when the window region shows a highly slanted
surface that has significantly varying disparities.

The first issue causes boundary-flattening arti-
facts in resulting disparity maps, but it can be
well handled by adaptive window approaches [17]
that use soft support window weights ωps for cost
aggregation. Yoon and Kweon [17] propose to use
the joint bilateral filtering for cost aggregation as
illustrated in Fig. 2.

The second issue causes staircase artifacts at
slated surfaces especially when large support win-
dows are used. For this, Bleyer et al. [3] propose a
slanted patch-matching technique, which approxi-
mates a surface in a support window by linearly-
varying disparities (parameterized by a disparity
plane d = au + bv + c) instead a constant dispar-
ity and can thus relax the fronto-parallel window
bias. This approach imposes a complicated infer-
ence task of pixelwise 3D continuous variables
(a, b, c), which is solved by inference techniques
explained later in a section on continuous disparity
estimation.

Regularization. Local methods that only rely on
the matching-cost term often produce inaccurate
disparities due to low feature regions or noises of
matching costs. Therefore, global methods add a
regularization term R(D) in the objective function
that is minimized by an optimization algorithm.

A widely adopted regularization is the trun-
cated linear model

R(D) =
∑

(p,q)∈N

ωpq min{τ, |Dp −Dq|}, (8)

where N is the set of neighboring pixel pairs,
ωpq is a contrast-sensitive weight for preserving
edges, and τ is a user-defined threshold param-
eter for allowing depth jumps at object bound-
aries. Because of its simple pairwise function form,
adopting this model can keep the optimization
quite tractable [13]. However, it is known to have
the fronto-parallel bias causing staircase artifacts
at slanted surfaces [16].

A variety of regularizers have been pro-
posed to handle the fronto-parallel bias. Wood-
ford et al. [16] propose a second-order smoothness
term, which evaluates |Dq − 2Dp + Dr| instead
of |Dp −Dq| for three consecutive pixels (q,p, r).
However, it imposes complicated optimization due
to the higher-order form of the objective func-
tion and treatment of continuous disparities. Ols-
son et al. [10] propose a powerful curvature regu-
larization term, which requires pixelwise continu-
ous disparity plane estimation but allows an effi-
cient pairwise function form. Scharstein et al. [12]
propose a scheme to encode pre-estimated sur-
face orientation priors into regularization without
increasing computational costs of optimization.

Optimization. Optimization is a necessary step
in global methods to minimize their objective
function with pairwise or higher-order interaction
terms for enforcing regularization.

When disparities are discrete variables and the
objective function has only up to their pairwise
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Binocular Stereo, Fig. 3 Segment-based disparity map
proposals for fusion. The image courtesy of Wood-
ford et al. [16].

interactions, then its optimization is well estab-
lished [13]; we can directly apply discrete opti-
mizers such as message passing algorithms (belief
propagation) and the expansion move algorithm
using graph cuts to approximately solve the combi-
natorial optimization problem. A commonly used
practical optimization method is the semi-global
matching (SGM) [5], which has a good trade-
off property between accuracy and efficiency for
real-time applications. It has been shown to be a
variant of message-passing techniques [4].

Continuous disparity estimation. Because dis-
parities inherently reside in a continuous space,
we need to infer continuous disparities for a more
accurate representation of 3D scenes.

One type of approaches to continuous dispar-
ity estimation seeks continuous disparities dur-
ing optimization. Since discrete optimizers cannot
be directly applied for this purpose, discrete-
continuous optimization strategies are often
employed. For example, segment-based stereo [2]
optimizes the assignment of pre-estimated dispar-
ity plane labels to each of superpixel regions1,
which produces continuous-valued but piecewise
planar disparity maps. Fusion based methods [16]
fuse many continuous-valued disparity map pro-
posals to produce a better solution by solving a
combinatorial optimization task using graph cuts,
where proposals are generated, e.g., by segment-
based methods using various patterns of super-
pixels (see Fig. 3 for an illustration). PatchMatch

1In segment-based methods, the objective function in Eq. 6 is
modified so that each node p and variable Dp represents a
superpixel and its disparity plane assignment, respectively.

stereo [3] estimates pixelwise continuous dispar-
ity planes using a randomized search scheme,
which no longer requires pre-estimated propos-
als. Its variants using belief propagation [1] or
graph cuts [14] further add regularization into this
randomized search scheme.

Another type of approaches estimates continu-
ous disparities as post-processing by refining initial
discrete disparity estimates. Since it is usually used
to refine initial disparities at integer pixels, this
refinement process is often called subpixel refine-
ment. For example, techniques based on gradient
descent [8] or curve (parabola) fitting [5] are often
employed.

Occlusion handling. Occlusion handling in
binocular stereo is usually done either as post pro-
cessing using left right consistency check [3, 5] or
during optimization by incorporating a occlusion
model into the objective function [7, 15]. While
the former approach can be adopted for both
local and global methods, the latter can be only
employed by global methods at the cost of produc-
ing complicated higher-order interactions in the
matching-cost term.

c) Learning based Methodologies
As an emerging trend in this field, learning based
approaches to binocular stereo have been gather-
ing great interest. In particular, end-to-end learn-
ing approaches using deep neural networks are
popular, which directly learn a mapping function f
from an image pair to a disparity map as

D = f(I, I′; Θ). (9)

The function f is implemented as convolutional
neural networks (CNN), whose parameters Θ are
optimized so as to minimize some loss function
`(D) over a large amount of training data. The
loss is evaluated using ground truth disparities in
supervised learning, or using a criteria similar to
the classical objective function in Eq. 6 without
using ground truth in self-supervised learning.

Such learning based methods are often advan-
tageous over classical methods in that they can
automatically handle difficulties of stereo such
as image patch distortions, illumination changes,
occlusions, rectification and calibration errors, by
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Binocular Stereo, Fig. 4 Basic neural network architecture for end-to-end learning of binocular stereo.

data-driven approaches. Because computations of
CNNs are massively parallelizable on GPUs, CNN
based methods can perform quite efficiently even
for continuous disparity inference.

Analogously to the taxonomy of classical stereo
algorithms [11], we identify four stages that neu-
ral network architectures for binocular stereo often
perform: feature extraction, volume construction,
cost volume learning, and disparity computation
and refinement. An example architecture of such
neural networks is shown in Fig. 4. Based on this
view, below we review existing works on learning
based methods.

Feature extraction. Early works on learn-
ing based methods use a neural network to
compute stereo matching costs. MC-CNN by
Zbontar and LeCun [19] extracts feature vec-
tors from image patches and computes match-
ing costs using the cosine distance (fast ver-
sion) or fully-connected layers (accurate version).
Learned matching costs are then fed into classical
stereo pipelines (SGM [5]) for disparity estima-
tion. Later, this feature extraction is taken as
the first stage of network architectures in end-
to-end learning approaches [6, 9, 20], e.g., using
feed-forward CNNs [9], ResNet-like networks [6],
spatial pyramid pooling (SSP) layers, or 2D hour-
glass networks [20], with the following subsequent
stages.

Volume construction. A seminal work by
Mayer et al. [9] proposes DispNetC, which con-
structs a matching cost volume and regresses out
a continuous disparity map for end-to-end learn-
ing. Volume construction is initially done in [9] by
correlating left and traversed right feature maps,

but it is later extended to concatenate feature
maps [6] or combine concatenation and group-wise
correlation.

Cost volume learning. Kendall et al. [6] propose
GC-Net, which processes a concatenation based
cost feature volume (4D tensor) by a 3D hour-
glass network using 3D Conv layers for cost volume
learning. Zhang et al. [20] propopse semi-global
aggregation and local guided aggregation layers for
cost volume learning, analogously to classical tech-
niques of SGM [5] and adaptive window based cost
aggregation [17].

Disparity computation and refinement. In
early works [9, 19], computing disparities is not
explicitly done in classification based methods [19]
or done by treating a 3D cost volume as a 2D
feature map for a scalar-map regression CNN in
DispNetC [9]. Kendall et al. [6] propose the soft-
argmin operator that can more effectively output
a continuous disparity map from a 3D cost vol-
ume. Regressed disparity maps are often further
processed by a shallow 2D CNN for refinement.

Open Problems

Benchmarks and Datasets
As there is an increasing demand for large-
scale binocular stereo datasets for data-driven
approaches, we introduce benchmarks and
datasets that are popularly used in this area.

Middlebury benchmark (version 3)2 provides
high resolution (1 to 6 MPix) stereo image pairs

2http://vision.middlebury.edu/stereo/
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Binocular Stereo, Fig. 5 Middlebury benchmark (an exam-
ple scene image and its ground truth disparity map).

Binocular Stereo, Fig. 6 KITTI 2015 and 2012 bench-
marks.

Binocular Stereo, Fig. 7 ETH3D benchmark.

Binocular Stereo, Fig. 8 SceneFlow dataset.

of 10 testing and 23 training indoor scenes with
highly accurate dense ground truth disparities
obtained by using structured-light scanning. An
example is shown in Fig. 5. The benchmark is
designed to contain some challenges such as differ-
ent exposures or illumination conditions between
image pairs, and the presence of vertical displace-
ments due to imperfect rectification.

KITTI 2015 benchmark3 provides 200 stereo
image pairs of 376 × 1242 pixels (0.5 MPix) for
each of training and testing sets, recorded by a

3http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?
benchmark=stereo

synchronized stereo camera mounted on a vehi-
cle running on public roads. An example is shown
in Fig. 6 (top). The training set images are pro-
vided with ground truth disparities for background
(using sparse depths measured by a LiDAR sensor)
and foreground regions (using 3D CAD models of
vehicles manually registered to the scenes).

KITTI 2012 benchmark4 provides stereo image
pairs of 194 training and 195 testing scenes. The
images and ground truth disparities are provided
similarly to the 2015 version. An example is shown
in Fig. 6 (bottom).

ETH3D benchmark5 (low-res two-view) pro-
vides 27 training and 20 testing stereo image pairs,
covering both indoor and outdoor scenes. Each
image has about 0.4 MPix. Training images are
provided with ground truth disparities obtained
by a laser scanner. An example is shown in Fig. 7.

SceneFlow dataset6 is a synthetic large scale
dataset for neural network training. It provides
stereo image pairs of totally 35, 454 training and
4, 370 testing scenes, where each image has 960×
540 pixels (0.5 MPix) and is provided with the
ground truth disparities for all the pixels. Both sets
contain randomly generated 3D scenes named Fly-
ingThings3D (see Fig. 8 for an example) and the
training set further contains additional Monkaa
(see Fig. 4) and Driving subsets.
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