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Abstract

We propose an image segmentation method that divides an image into foreground and
background regions when the approximate color distributions for these regions are given.
Our approach was inspired by global consistency measures that directly evaluate the sim-
ilarity between a given distribution and the distribution of the resulting segmentation,
which were recently proposed in order to overcome the limitations of traditional pixel-
wise (local) consistency measures. The main feature of our proposal is that it uses two
(foreground and background) input distributions, which increases the robustness com-
pared to previous studies. To achieve this, we formulated a new mathematical model that
describes the consistencies between the two input distributions and the segmentation, in
which weighting parameters for the two distribution matching terms are set to be approx-
imately proportional to the size of the foreground and background areas. We call this dual
distribution matching (DDM). We also derived an optimization method that uses graph
cuts. Experimental results that show the effectiveness of our method and comparisons
between local and global consistency measures are presented.

1 Introduction
This paper addresses the problem of foreground-background image segmentation where only
the approximate color distributions of the foreground and background regions are given as
the input. For example, when a video sequence is processed, such distributions are given
from the previous frames. Our aim is to derive a fundamental algorithm with this primitive
setup that can find foreground and background regions that are consistent with the given
input distributions. The essential question here is how to measure consistencies between the
given distributions and the segmentation.

Local measures are widely adopted [5, 10, 11, 14] by virtue of their simplicity. Each pixel
is individually evaluated to determine how likely it is to belong to the foreground or back-
ground based on its color, which can be formulated as unary terms. Typically, a smoothness
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constraint is appended as the pairwise terms penalizing discontinuities between the neigh-
boring pixels. Accordingly, the segmentation problem is expressed as the minimization of
an energy function that consists of unary and pairwise terms. Such types of functions can be
exactly minimized by using graph cuts [6, 8] in polynomial time. However, local-measure-
based methods are subject to the shrinking bias (where the border length tends to be shorter),
which often results in shortcutting across thin structures [13].

Recent studies [3, 12, 15] have shown that methods based on global measures outperform
conventional local-measure-based methods. The global consistency is measured by the sim-
ilarity between a given distribution and the resulting distribution from the extracted region.
However, its optimization is complicated because it cannot be formulated as unary terms; in
principle, the similarities cannot be calculated exactly until the extracted region is fixed in
the target image. Of the global-measure-based methods, Ayed et al. [3] formulated the distri-
bution similarity as the Bhattacharyya coefficient [1, 4], and proposed an efficient graph-cut
based optimization method Bhattacharyya Measure Graph Cut (BMGC) that extracts a re-
gion consistent with an input distribution. When the input distribution is sufficiently accurate
to represent the object region, the BMGC method outperforms previous methods, including
active contour models [2, 7, 15, 16]. However, such accurate distributions are usually un-
known, and in reality, approximate distributions, which are practically available, often lead
to poor results [12]. Pham et al. [12] dealt with this problem by assuming that the distribu-
tion of the extracted region is similar to the input distribution (the matching condition) but
distinct from that of the complementary region (the complementary condition).

We introduce a new distribution matching method named dual distribution matching
(DDM) as another approach to increasing the robustness of global measures. In this method,
the consistencies between two input distributions (the foreground and background distribu-
tions) and the resulting segmentation are enforced simultaneously. We not only combine two
(foreground and background) matching terms, we also derive the optimal weighting param-
eters for these terms. Additionally, we derive a minimization method for the energy function
of DDM. Our method makes it possible to achieve robust and accurate segmentations even
with not-so-accurate input distributions, as revealed in the Experiments section.

2 Dual Matching Model of Foreground and Background

2.1 Formulating the Estimation Model

Binary segmentation is formulated as a problem that involves finding a label LLL for the set of
pixels P, as LLL = {Lp|Lp ∈ {F,B}, ∀p ∈ P}, where p denotes a pixel, and F /B denotes the
foreground/background label. The foreground/background region is the set of all pixels with
F /B and is denoted as RLLL

l = {p ∈ P|Lp = l} (l = F,B). The probability distribution of colors
(or intensities) within region RLLL

l is written as PLLL
l (l = F,B).

Let us assume that only the approximate distributions for both the foreground and back-
ground are given as HF ' PLLL∗

F and HB ' PLLL∗
B , where LLL∗ is the ground truth of LLL. Here, LLL∗

is inferred as the label that minimizes the following energy function E(LLL):

E(LLL) = λFMF(LLL)︸ ︷︷ ︸
Foreground Matching

+ λBMB(LLL)︸ ︷︷ ︸
Background Matching

+ λSS(LLL)︸ ︷︷ ︸
Smoothness

, (1)
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Figure 1: Dual matching energy function.

whereMl(LLL) is the negative of the distribution similarity measure B(,):

Ml(LLL) =−B
(
PLLL

l ,Hl

)
(l = F,B). (2)

The S(LLL) is a smoothness function composed of pairwise discontinuity penalties. This is
called dual distribution matching or DDM, because both the foreground and background
distributions are matched simultaneously.

The distribution PLLL
l within region RLLL

l is given by the kernel density estimation (KDE)
with an arbitrary kernel function Kz:

PLLL
l (I) = ∑

p∈RLLL
l

KI(Ip)/|RLLL
l |, (3)

where I, Ip ∈ Rn is a color vector of a pixel p (n = 3 with the RGB coordinates), and |R| =
∑R 1 is the number of pixels within the region R. When the color space is quantized in
discrete bins z ∈ Z, and the kernel is the Dirac function Kz(Ip) that takes 1 for Ip ∈ z and
0 otherwise, PLLL

l (z) becomes a histogram. The term B(,) is the Bhattacharyya coefficient
that measures the amount of overlap between two distributions f and g, which takes 1 as the
maximum when f = g:

B ( f ,g) = ∑
z∈Z

√
f (z)g(z)≤ 1 (4)

With the definitions above, E(LLL) with λB = 0 or λF = 0, which we define as EF(LLL) or
EB(LLL) respectively, is equivalent to the single distribution matching of the BMGC method
[3]. We refer to the BMGC method with EF(LLL) or EB(LLL) as F-BMGC or B-BMGC. As
illustrated in Fig. 1, those methods cannot capture the true solution LLL∗ if the input distribution
HF or HB is inaccurate. In contrast, our method is more likely to capture the true solution
by using both distributions simultaneously.

2.2 Estimation of Weighting Parameters
The weighting parameters λF and λB in Eq. (1) should be set so that the global minimum of
E(LLL) captures the true solution LLL∗. We employ a new concept of matching the entire image
distribution to select the parameters, as it unifies the independent concepts of foreground
matching and background matching.

The entire image distribution Ω can be expressed as

Ω(z) = rLLL
F PLLL

F (z)+ rLLL
BPLLL

B (z) (5)

with an arbitrary label LLL 1, where rLLL
l (l = F,B) is the ratio of areas defined as rLLL

l = |RLLL
l |/|R|

with the area of the entire image |R|. An approximation of the entire image distribution Ω̃ is
1Note that although the right-hand side of Eq. (5) contains the variable label LLL, the entire image distribution Ω

itself is known and constant.
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expressed with the input distributionsHF andHB as

Ω̃(z;η) = ηHF(z)+(1−η)HB(z), η ∈ [0,1]. (6)

Ω̃ coincides with Ω if the input distributions are accurate and η is equal to |RLLL∗
F |/|R|.

To maximize the similarity between Ω̃ and Ω, we seek ηF that minimizes EA(η):

EA(η) = −B
(
Ω(z),Ω̃(z;η)

)
(7)

Here, ηF and ηB = 1−ηF indicate the contributions HF and HB have on the entire image
distribution. It is also expected that ηF ' rLLL∗

F and ηB ' rLLL∗
B with the true label LLL∗, because

Ω(z) = rLLL∗
F PLLL∗

F (z)+ rLLL∗
B PLLL∗

B (z) from Eq. (5). Notably, as shown in Appendix A, EA(η) is
upper bounded by a dual matching function:

EA(η)≤
√

η rLLL
FMF(LLL)+

√
(1−η)rLLL

BMB(LLL) (8)

We rewrite the right-hand side of Eq. (8) as D(LLL;η). This inequality shows that the energy
EA(η) that measures the correctness of the estimated entire image distribution is closely as-
sociated with the energy D(LLL;η) that matches the foreground and background distributions
individually. In summary, we have EA(ηF)≤ EA(η)≤D(LLL;η); the lower bound of D(LLL;η)
is minimized to EA(ηF) when η = ηF , and D(LLL;ηF) is minimized to EA(ηF) if one of the
following two sufficient conditions is satisfied for each z ∈ Z.

PLLL
F (z) =HF(z), PLLL

B (z) =HB(z), rLLL
F = ηF (the matching condition) (9)

PLLL
F (z) ·HB(z) = PLLL

B (z) ·HF(z) = 0 (the complementary condition) (10)

The matching condition is satisfied when the input distributions (HF andHB) coincide with
the distributions computed from the estimated label (PLLL

F and PLLL
B ), and ηF and rLLL

F are the
same. The complementary condition is satisfied when the intersection between the estimated
foreground distribution and the given background distributions is zero, and vice versa. Both
conditions are often used as the constraints for image segmentation [12].

Consequently, we use D(LLL;ηF) as the first two terms in Eq. (1) to obtain:

E(LLL) =
√

ηF rLLL
FMF(LLL)+

√
ηB rLLL

BMB(LLL)︸ ︷︷ ︸
appearance termA(LLL)

+λ

(√
ηF rLLL

F +
√

ηB rLLL
B

)
︸ ︷︷ ︸

λS

S(LLL), (11)

where not only Ml(LLL) but also the weighting parameters depend on the label LLL. The
above definition of λS reflects the fact that the absolute size |A(LLL)| is upper bounded by√

ηF rLLL
F +

√
ηB rLLL

B. The physical meaning of the derived weighting parameters in Eq. (11) is
intuitive:MF(LLL) andMB(LLL) should be weighted in proportion to the size of the foreground
and background areas. Use of this energy function is equivalent to not only matching the
foreground and background distributions simultaneously, but also inferring the entire image
distribution.

3 Optimizing the Energy Function E(LLL)

3.1 Auxiliary Function
The function E(LLL) of Eq. (11) is not expressed by the sum of unary and pairwise terms, so
it cannot be directly optimized using graph cuts [6, 8]. We derived auxiliary functions (see
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Figure 2: Auxiliary labels. Closed lines (including dashed ones) indicate borderlines of
labels, where inner area is foreground and outer area is background.

Fig. 1 in [9] for the concept illustration.) that comprise unary terms and pairwise terms to
optimize E(LLL). Our inspiration for this was the BMGC method [3]. An auxiliary function
g(LLL,LLLc) (note that the parameters are not interchangeable) of f (LLL) satisfies

f (LLL)≤ g(LLL,LLLc), f (LLL) = g(LLL,LLL), (12)

where LLLc is a fixed label called an auxiliary label [3] that satisfies RLLLc

l ⊇ RLLL
l . The function

f (LLL(τ)) does not increase throughout the following iterations:

LLL(τ+1) = arg min
LLL

g(LLL,LLL(τ)), (13)

where the previous result LLL(τ) is used as the auxiliary label. This is proved by Eq. (12) and
(13) as f (LLL(τ+1))≤ g(LLL(τ+1),LLL(τ))≤ g(LLL(τ),LLL(τ)) = f (LLL(τ)).

3.2 Giving an Upper Bound Function to Energy Function E(LLL)

According to the BMGC method [3], the function Gl(LLL,LLLc,ε) (l = F,B) given by Eq. (14) is
expressed with unary terms and is also an auxiliary function ofMl(LLL) when ε = 0.

Gl(LLL,LLLc,ε) = (1− ε) ∑
p∈RLLL

l

Ml(LLLc)
|RLLLc

l |
+ ∑

p∈RLLL
l̄

δLc
p=l

|RLLLc

l |

(
Ml(LLLc)+ ∑

z∈Z
Kz(Ip)

√
Hl(z)
PLLLc

l (z)

)
(14)

Here, LLLc is a fixed label called an auxiliary label that satisfies RLLLc

l ⊇ RLLL
l , and ε ∈ [0,1]. The

value l̄ is the inverse of l, and δ(true) = 1 and δ(false) = 0.
We incorporate Gl(LLL,LLLc,ε) into the weighted matching terms in Eq. (11), resulting in an

upper bound for each weighted matching term:√
ηF rLLL

FMF(LLL)≤
√

ηF rLLLa

F GF(LLL,LLLa,α),
√

ηB rLLL
BMB(LLL)≤

√
ηB rLLLb

B GB(LLL,LLLb,β ) (15)

with auxiliary labels LLLa and LLLb that satisfy RLLLa

F ⊇ RLLL
F and RLLLb

B ⊇ RLLL
B (refer to Fig. 2a for

a visualization), and α,β ∈ [0,1]. Consequently, the upper bound Ê(LLL,LLLa,LLLb,α,β ) of the
entire energy E(LLL) of Eq. (11) is expressed by unary terms and pairwise terms as

Ê(LLL,LLLa,LLLb,α,β )=
√

ηF rLLLa

F GF(LLL,LLLa,α)+
√

ηB rLLLb

B GB(LLL,LLLb,β )+ λ̂SS(LLL)≥ E(LLL), (16)

where λ̂S = λ

(√
ηF rLLLa

F +
√

ηB rLLLb

B

)
≥ λS. (17)
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Process 1 Optimize E(LLL)
initialize
• Initialize auxiliary labels: La

p = F , Lb
p = B ∀p ∈ P

• Estimate the ratio of areas: ηF = arg minEA(η)
• Initialize result buffer labels: LLLa* = LLLb* = LLLout = null
• Obtain a result using a local-measure-based method: LLLlocal = standard_graphcut(HF ,HB)

for t = 1 to T do
1: Update foreground auxiliary label by Process 2: Input:LLLa, LLLb, LLLa∗,Output:LLLa∗

2: Update background auxiliary label by Process 3: Input:LLLa, LLLb, LLLb∗, Output:LLLb∗

3: Refine auxiliary labels by Process 4: Input:LLLa∗, LLLb∗, LLLout, LLLlocal, Output:LLLa, LLLb

4: Segmentation using Eq. (16): LLL(t) = arg min Ê(LLL,LLLa,LLLb,α0,β0)
5: Compare and update the results: LLLout = arg minA(LLL) with LLL ∈ {LLL(t),LLLout}
6: Refine auxiliary labels by Process 4: Input:LLLa∗, LLLb∗, LLLout, LLLlocal, Output:LLLa, LLLb

end for
return LLLout

Process 2 Update Foreground Auxiliary Label
initialize
• Initialize α and β : α = α0, β = β0
• Initialize auxiliary labels LLL(a) and LLL(b): LLL(a) = LLLa, LLL(b) = LLLb

repeat
1: Graph cut by Eq. (16): LLL(τ) = arg min Ê(LLL,LLL(a),LLL(b),α,β )
2: Update the auxiliary label LLL(a): LLL(a) = LLL(τ)

3: Decrease α: α = αρ (ρ > 1)
until A(LLL(τ)) converges or increases
update Compare and update the result: LLLa∗ = arg minA(LLL) with LLL ∈ {LLL(a),LLLa∗}

Process 3 Update Background Auxiliary Label
This process is equivalent to Process 2 except for a few differences: at repeat 2: update auxiliary
label by LLL(b) = LLL(τ); at repeat 3: decrease β by β = β γ (γ > 1); and at update, compare and
update the result by LLLb∗ = arg minA(LLL) with LLL ∈ {LLL(b),LLLb∗}.

We can optimize E(LLL) by repeatedly minimizing Ê . Strictly speaking, Ê(LLL,LLLa,LLLb,α,β )
does not work as an auxiliary function2, although E(LLL) = Ê(LLL,LLLa,LLLb,α,β ) is satisfied when
α = β = 0 and LLL = LLLa = LLLb. However, when the two given auxiliary labels are sufficiently
similar, i.e. LLLa ' LLLb, Ê(LLL,LLLa,LLLb,α,β ) is expected to approximate E(LLL). Therefore, we
optimize E(LLL) by alternately updating LLLa and LLLb to make them converge to the true label LLL∗

from the outer and inner sides (refer to Fig. 2b).

3.3 Optimization Algorithm
Process 1 shows an optimization algorithm of the energy function E(LLL) of Eq. (11). The

process basically consists of “Update Foreground and Background Auxiliary Labels” and
“Segmentation” with “Refine Auxiliary Labels” between them. We prepared LLLa∗, LLLb∗, and

2 The upper bound Ê(LLL,LLLa,LLLb,α,β ) of E(LLL) has two fixed auxiliary labels, LLLa and LLLb, which bind the border
of variable label LLL from both sides (Fig. 2a). For this, in a simple iteration process following Eq. (13): LLL(τ+1) =
arg min

LLL
Ê(LLL,LLL(τ),LLL(τ),α,β ), the variable LLL is fixed at LLL(τ); therefore, iterative optimization is not achieved.
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Process 4 Refine Auxiliary Labels
Select two labels (LLLM and LLLN ) from LLLa∗, LLLb∗, LLLout, and LLLlocal that most minimize A(LLL). As Fig. 2c
illustrates, the auxiliary labels LLLa and LLLb are updated so that RLLLa

B ⊃ (RLLLM

B ∪RLLLN

B ) and RLLLb

F ⊂ (RLLLM

F ∩
RLLLN

F ) with a margin w(t).

LLLout to store the results. Also, LLLlocal is a label obtained by using a method based on local
appearance measures such as interactive graph cuts [5]. Process 2 and Process 3 are used
to implement the iteration of Eq. (13) in two ways (foreground and background) in order to
reduce E(LLL(τ)), which is a direct expansion of the BMGC optimization method. Process 4 is
an implementation of the process of conservatively updating the auxiliary labels LLLa and LLLb.
The entire algorithm looks rather complicated since it adaptively selects reasonable labels
from the ones produced during the process. This process might be simplified in the future.

4 Experiments
We used the GrabCut database [14], which is composed of 50 test images with their ground
truth labels (two values of foreground and background boundaries) and lasso-trimap la-
bels (three values of foreground, background, and unknown boundaries). We used three-
dimensional 64×64×64 uniform histograms in the RGB space for the distribution expres-
sion.

4.1 Evaluation of Weighting Parameters
We compared the proposed appearance termA(LLL) with a fixed weight version whereAfixed(LLL)=
0.5·MF(LLL)+0.5·MB(LLL) in order to evaluate the proposed weighting parameters in Eq. (11).
Approximate input distributions HF and HB were produced from the foreground and back-
ground regions in the lasso-trimap included in the database. We produced a label GGG(h) for
each image by expanding (shrinking if h < 0) the foreground of the ground truth label GGG
(= LLL∗) by h pixels. Then, we substituted LLL = GGG(h) (−10 ≤ h ≤ 10) into the four energies
MF(LLL),MB(LLL), A(LLL), and Afixed(LLL).

Figure 3 plots these four energies averaged over the 50 images. The input distributions
were produced from lasso-trimaps, and therefore, the foreground terms MF(LLL) and back-
ground terms MB(LLL) tend to be minimized by relatively smaller regions than the ground
truth. The function Afixed(LLL) is excessively influenced by the foreground term. This is be-
cause the foreground is smaller than the background for most images in the database, but
both terms are equally weighted in Afixed(LLL). In contrast, the function A(LLL) draws an ideal
curve that is minimized at h = 0 i.e. LLL = LLL∗, because MF(LLL) and MB(LLL) are weighted
nearly in proportion to the size of the foreground and background areas.

4.2 Evaluation of Segmentation Accuracy
Experimental Conditions We compared five methods: (a) DDM (proposed), (b) DDM
with Afixed(LLL) (fixed weighting parameters), (c) F-BMGC [3] (foreground matching), (d)
B-BMGC [3] (background matching), and (e) interactive graph cuts [5] (local measure). The
segmentation target was the entire image; the ground truth and lasso-trimap labels were used
only for creating the input distributions. Accuracy was measured by the average of error

Citation
Citation
{Boykov and Jolly} 2001

Citation
Citation
{Rother, Kolmogorov, and Blake} 2004

Citation
Citation
{Ayed, mei Chen, Punithakumar, Ross, and Li} 2010

Citation
Citation
{Ayed, mei Chen, Punithakumar, Ross, and Li} 2010

Citation
Citation
{Boykov and Jolly} 2001



8 TANIAI, PHAM, TAKAHASHI, NAEMURA: DUAL DISTRIBUTION MATCHING

-1

-0.98

-0.96

-0.94

-0.92

-0.9

-10 -8 -6 -4 -2 0 2 4 6 8 10

Border Shifting Width h  [pixels]

En
er

gy
 F

un
ct

io
n 

V
al

ue ( )FM L

( )BM L

proposed

( )A L

fixed ( )A L

Figure 3: Profiles ofMF(LLL),MB(LLL), A(LLL), and Afixed(LLL), where the border of LLL is shifted
by h pixels from the ground truth. Because the input distributions ofHF andHB are inaccu-
rate, neither the foreground or background term alone captures the true solution, whileA(LLL)
with the estimated weighting parameters takes the minimum at h = 0 (LLL = LLL∗).

Method Results using Parameter 1 Results using Parameter 2
EPR (mean±std) Time [sec] EPR (mean±std) Time [sec]

(a) DDM 1.226 ± 0.788 % 2.32 1.345 ± 0.820 % 2.37
(b) DDM (fixed weighting parameters) 1.959 ± 1.279 % 3.05 2.281 ± 1.343 % 2.82
(c) F-BMGC [3] 3.509 ± 2.903 % 1.75 4.635 ± 2.798 % 0.54
(d) B-BMGC [3] 2.032 ± 1.683 % 0.84 2.429 ± 1.974 % 0.49
(e) Interactive graph cuts [5] 1.530 ± 0.958 % 0.23 1.590 ± 1.120 % 0.25

Table 1: Comparison of segmentation accuracy with lasso-trimap distributions, with average
accuracy and processing time over 50 images from the GrabCut database [14].

pixel rate (EPR), which is the ratio of the number of misclassified pixels to the number of all
pixels. We used two sets of parameters (Parameters 1 and 2) for the smoothness term, which
are detailed in Appendix B.

Segmentation with Lasso-Trimap Distributions In this experiment, we used approxi-
mate input distributionsHF andHB learned from the foreground and background regions in
the lasso-trimap of the database. Table 4.2 lists the EPRs (mean and std), and the processing
time per image for each method, and it indicates that our method yielded the best average
EPR. When Parameter 1 was used, the proposed method outperformed method (b) for 41
images, method (c) for 46 images, method (d) for 41 images, and method (e) for 39 images,
out of the 50 images. Several resulting images are shown in Fig. 4 (see Appendix C for more
results). We observe that (a) the proposed method captures well the details of objects thanks
to the global appearance measure that evaluates both the foreground and background consis-
tencies, while (e) interactive graph cuts often produces shortcuts through thin structures. It
can also be seen that the foregrounds tend to be reduced by (c) F-BMGC and expanded by
(d) B-BMGC because the input distributions are taken from the lasso-trimap. (b) DDM with
fixed weighting parameters overweights the foreground terms, yielding similar results to (c).

Video Segmentation We applied our method to a video sequence (“carphone”) consisting
of 176×144 pixels and 382 frames by taking the input distributions from the segmentation
result for the previous frame with the first frame manually segmented. The results of the
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(GT) (a) (b) (c) (d) (e)

person4
1.50%, 2.75 sec. 1.46%, 2.86 sec. 1.27%, 0.73 sec. 1.93%, 0.87 sec. 4.11%, 0.30 sec.

tennis 1.21%, 2.40 sec. 3.13%, 2.64 sec. 3.84%, 0.56 sec. 4.19%, 0.64 sec. 2.67%, 0.22 sec.

person5 0.56%, 2.65 sec. 2.45%, 3.25 sec. 2.80%, 1.28 sec. 1.58%, 0.77 sec. 2.22%, 0.27 sec.
Figure 4: Segmentation results using lasso-trimap distributions. From left to right, (GT) tar-
get image with its ground truth label, and the results of (a) the proposed, (b) fixed weighting
parameters, (c) F-BMGC, (d) B-BMGC, and (e) interactive graph cuts.

#60 #100 #195 #305
Figure 5: Video segmentation.
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Figure 6: Comparison of consistency measures.

proposed method, F-BMGC, and interactive graph cuts are shown in Fig. 5, from top to
bottom (see also Appendix D and the supplementary video). The proposed method produced
the most stable results, while F-BMGC was unstable and prone to flickering, and interactive
graph cuts produced significant errors around the right shoulder.

Comparative Simulation between Local and Global Consistency Measures Finally, we
compared local and global consistency measures while varying the accuracy of the input
distributions, which, as far as we know, has yet to be investigated and reported. The input
distributions were purposely made inaccurate by limiting the reference region using masks
like the ones shown in Fig. 6; we varied the ratio of the masking region (reference rate) from
100% to 5% in 5% increments in order to control the accuracy of the input distributions.

As the graph in Fig. 6 illustrates, (a) our method outperformed the others at high and
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medium accuracies (the reference rate of 100%–20%), but (e) interactive graph cuts per-
formed the best at very low accuracies. This is because global measures enforce the consis-
tency between the input distributions and the segmentation even if they are inaccurate. We
conclude that global measures are advantageous when combined with highly/moderately ac-
curate distributions. Meanwhile, the local-measure-based method (e) seems more robust to
the inaccuracies of the input distributions. BMGC methods (c) and (d) slightly outperformed
(e) interactive graph cuts when the reference rate was 100%–95%, but their performance
rapidly worsened as the accuracy of the input distributions decreased. This indicates that us-
ing only a single distribution is insufficient unless it is accurate. Also, the proposed method
outperformed (b) fixed weighting parameters, which shows the validity of the weighting
parameter estimation.
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