

Introduction

pairs recorded by a moving stereo camera rig.

motion segmentation indicating moving object mask with 6 DoF camera ego-motion.

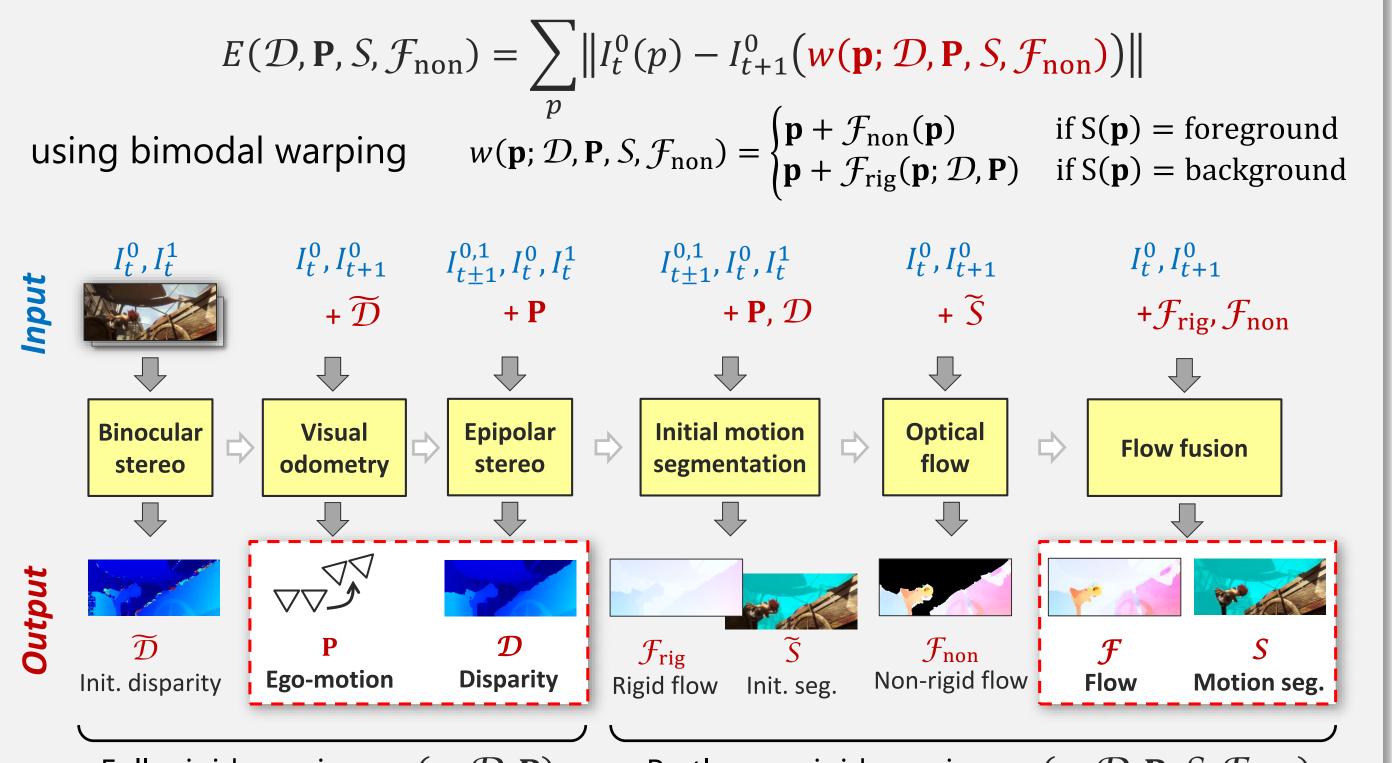
- We propose a stereo scene flow method that simultaneously recovers moving-object mask (motion segmentation) and camera ego-motion as well as disparity and optical flow maps.
- Our method takes 2 3 seconds to process each frame in the KITTI dataset using only CPU, which is 1 – 3 orders of magnitude faster than state-of-the-art methods.

Contributions

Unified framework where multiple tasks benefit from each other

- Optical flow: 2D flow motion for rigid background (rigid flow) is recovered parametrically using known depth and camera motion, reducing computational burden of general (non-rigid) optical flow.
- Stereo: Given camera motion, disparity at left-right occluded regions is improved via multi-view stereo on consecutive frames.
- Motion segmentation: The segmentation mask is a byproduct of our flow estimation that fuses non-rigid and rigid flow maps.
- Visual odometry: Camera motion estimates are recovered more robustly by utilizing the moving object mask information.

In contrast to existing joint methods


• We decompose the task into several simple optimization problems, rather than directly optimizing a single complex function.

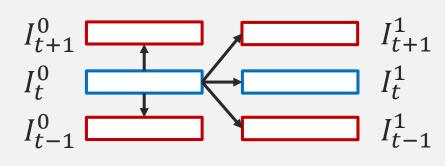
Fast Multi-frame Stereo Scene Flow with Motion Segmentation

Tatsunori Taniai (RIKEN AIP/Univ. of Tokyo) **Sudipta N. Sinha** (Microsoft Research)

Multi-staged pipeline framework

We estimate disparity \mathcal{D} , camera motion **P**, moving-object mask S, and movingobject flow \mathcal{F}_{non} (non-rigid flow) by implicitly minimizing image residual

Fully rigid warping $w(p; \mathcal{D}, \mathbf{P})$


Binocular stereo uses SGM to get an initial disparity map.

Visual odometry estimates camera motion by minimizing

 $\min_{\mathbf{p}} \sum_{p} w_{p} \left\| I_{t}^{0}(p) - I_{t+1}^{0} (w(\mathbf{p}; \mathcal{D}, \mathbf{P})) \right\|$

We downweight moving object regions by w_p predicted by previous {*S*, \mathcal{F}_{non} }.

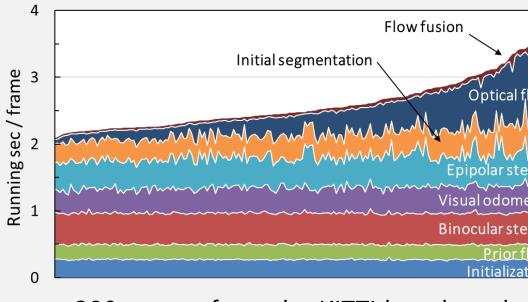
Epipolar stereo refines disparity using temporarily adjacent frames. We blend left-right matching costs with matching costs for four adjacent frames.

Initial segmentation finds moving object regions. We use GrabCut with image residual as soft seeds for moving foreground.

Optical flow estimates 2D flow map for only the predicted moving object regions. We use the SGM algorithm.

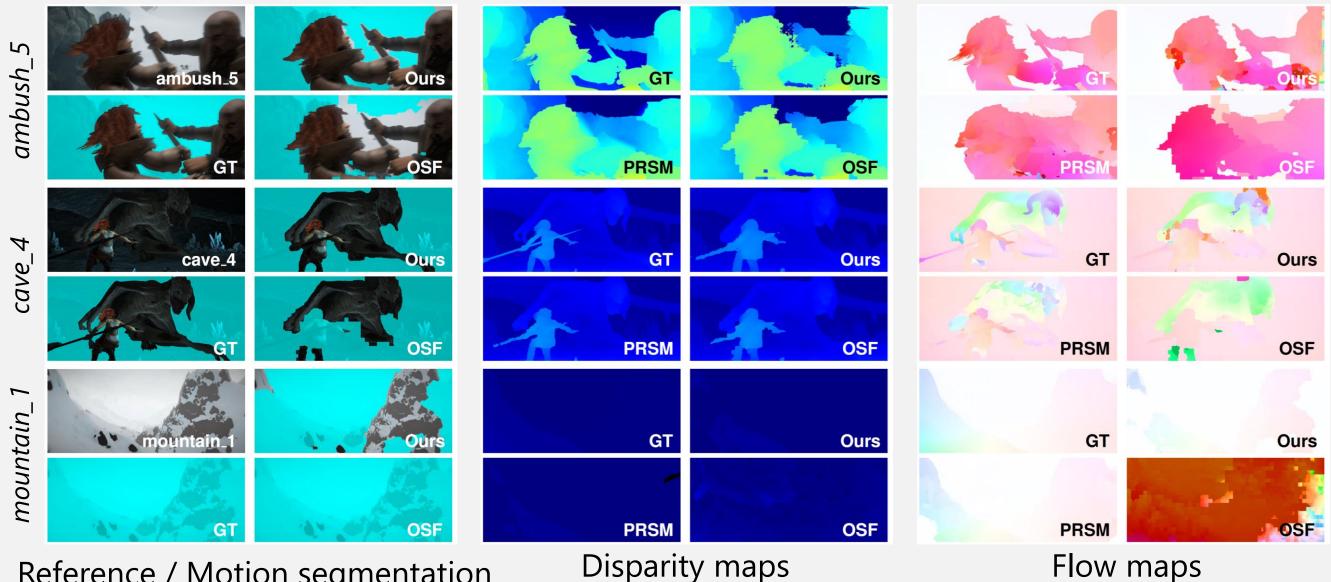
Yoichi Sato (Univ. of Tokyo)

Flow fusion combines rigid and nonrigid flow proposals by a fusion move.

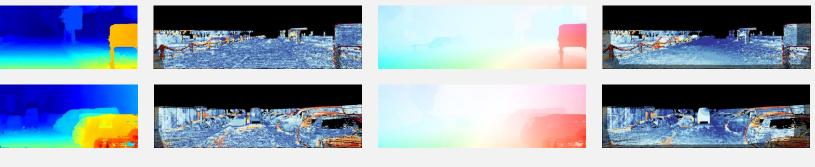

Experiments

KITTI 2015 stereo scene flow benchmark (in November 2016)

Rank	Method	D1-bg	D1-fg	D1-all	D2-bg	D2-fg	D2-all	Fl-bg	Fl-fg	Fl-all	SF-bg	SF-fg	SF-all	Time
1	PRSM [43]	3.02	10.52	4.27	5.13	15.11	6.79	5.33	17.02	7.28	6.61	23.60	9.44	300 s
2	OSF [30]	4.54	12.03	5.79	5.45	19.41	7.77	5.62	22.17	8.37	7.01	28.76	10.63	50 min
3	FSF+MS (ours)	5.72	11.84	6.74	7.57	21.28	9.85	8.48	29.62	12.00	11.17	37.40	15.54	2.7 s
4	CSF [28]	4.57	13.04	5.98	7.92	20.76	10.06	10.40	30.33	13.71	12.21	36.97	16.33	80 s
5	PR-Sceneflow [42]	4.74	13.74	6.24	11.14	20.47	12.69	11.73	27.73	14.39	13.49	33.72	16.85	150 s
8	PCOF + ACTF [10]	6.31	19.24	8.46	19.15	36.27	22.00	14.89	62.42	22.80	25.77	69.35	33.02	0.08 s (GPU)
12	GCSF [8]	11.64	27.11	14.21	32.94	35.77	33.41	47.38	45.08	47.00	52.92	59.11	53.95	2.4 s
						<u>e</u>								
Ref	erence	Mot	ion		Dispa	ritv	Dist	parity	error	Opt	tical fl	OW	Flo	w error
Improvements by epipolar stereo Evaluation on Sintel dataset														


		all pixels	non-occluded pixels				
	D1-bg	D1-fg	D1-all	D1-bg	D1-fg	D1	
Binocular $(\tilde{\mathcal{D}})$	7.96	12.61	8.68	7.09	10.57	7.	
Epipolar (\mathcal{D})	5.82	10.34	6.51	5.57	8.84	6.	

Per-stage running times


200 scenes from the KITTI benchmark

Comparison with state-of-the-art methods (PRSM, OSF) on Sintel dataset

Reference / Motion segmentation

Our method is better

Partly non-rigid warping $w(p; \mathcal{D}, \mathbf{P}, S, \mathcal{F}_{non})$