
Joint Recovery of Dense Correspondence and Cosegmentation in Two Images

Tatsunori Taniai
The University of Tokyo

Sudipta N. Sinha
Microsoft Research

Yoichi Sato
The University of Tokyo

Abstract

We propose a new technique to jointly recover cosegmen-
tation and dense per-pixel correspondence in two images.
Our method parameterizes the correspondence field using
piecewise similarity transformations and recovers a map-
ping between the estimated common “foreground” regions
in the two images allowing them to be precisely aligned.
Our formulation is based on a hierarchical Markov random
field model with segmentation and transformation labels.
The hierarchical structure uses nested image regions to con-
strain inference across multiple scales. Unlike prior hier-
archical methods which assume that the structure is given,
our proposed iterative technique dynamically recovers the
structure along with the labeling. This joint inference is per-
formed in an energy minimization framework using iterated
graph cuts. We evaluate our method on a new dataset of 400
image pairs with manually obtained ground truth, where it
outperforms state-of-the-art methods designed specifically
for either cosegmentation or correspondence estimation.

1. Introduction

Recovering dense per-pixel correspondence between im-
age regions in two or more images is a central problem
in computer vision. While correspondence estimation for
images of the same scene (stereo, optic flow, etc.) is
well studied, there has been growing interest in the case
where the images portray semantically similar but different
scenes or depict semantically related but different object in-
stances [36]. Due to the variability in appearance, shape and
pose of distinct object instances, camera viewpoint, scene
lighting and backgrounds in the images, the task is quite
challenging in the unsupervised setting. Yet, correspon-
dence estimation enables fine-grained image alignment cru-
cial in tasks such as non-parametric scene parsing and label
transfer [36], 3D shape recovery [51], image editing [19]
and unsupervised visual object discovery [11, 42, 45, 50].

In parallel to advances in correspondence estimation,
there has also been rapid progress in image cosegmenta-
tion [17, 26, 41, 46] methods that automatically segment
similar “foreground” areas in two or more images. These

Input images Seg. & flow (GT) Warped (GT) Warped (Ours)
Figure 1. Joint recovery of dense correspondence and cosegmenta-
tion where foregrounds are segmented and aligned. We show our
results and corresponding ground truth (GT) from our new dataset.

methods often require the foregrounds depicting common
objects to have similar region statistics. Most cosegmen-
tation methods do not explicitly recover dense pixel corre-
spondence and alignment in the region labeled foreground.
On the other hand, correspondence estimation methods
[36, 29, 53, 23] align all the pixels without explicitly infer-
ring which pixels in the two images actually have valid cor-
respondence. Thus, recovering cosegmentation along with a
dense alignment of the common foregrounds can be viewed
as a holistic approach to solving both tasks.

In this paper, we present insight into how image coseg-
mentation and correspondence (or flow) estimation can be
tackled within a unified framework by framing it as a label-
ing problem (Figure 1). We show that jointly solving the
two tasks in this way can improve performance on both of
them. This paper deals with the case where only two input
images are given. The setting is unsupervised and we do not
assume a priori information about the objects or the scene.

Our contributions are three folds. First, we propose a
new hierarchical Markov random field (MRF) model for
joint cosegmentation and correspondence recovery. The hi-
erarchy is defined over nested image regions in the refer-
ence image and the nodes representing these regions take
segmentation and flow labels. In our method, the hierar-
chy itself is inferred in conjunction with the labeling and is
crucial for achieving robustness to dissimilar appearance of
different object instances. Precomputed hierarchical struc-
tures [29, 23, 27] are unsuitable for our task because pixels
inferred as background must be excluded from matching.

Second, we propose a new optimization technique for
the joint inference of the graph structure and labeling. Per-

forming exact inference jointly on the whole hierarchical
structure is intractable. In the proposed approach, layers of
the hierarchy are incrementally estimated with the labeling
in an energy minimization framework using iterated graph
cuts [8, 31] (alpha expansion moves).

Finally, we release a new dataset with 400 image pairs
for which we provide ground truth cosegmentation masks
and flow maps. The original images and some of the seg-
mentation masks are taken from existing datasets [35, 42,
20]. The remaining segmentation masks were obtained us-
ing interactive image segmentation. The flow maps were
obtained by selecting sparse keypoint correspondence with
our interactive annotation tool and applying natural neigh-
bor interpolation [44] on the sparse data. Poor flow maps
were discarded by visually inspecting the flow-induced im-
age warping result. The ground truth flow maps makes it
possible to directly evaluate dense image alignment. Even
SIFT Flow [36] and other correspondence estimation meth-
ods [29, 54] are evaluated indirectly on tasks such as seg-
mentation transfer and scene parsing using datasets that lack
ground truth pixel correspondence.

The paper is organized as follows. We describe related
work in Section 2 and our proposed model in Section 3.
Section 4 presents our optimization method whereas imple-
mentation details and the images features used are described
in Section 5. Finally, in Section 6, we report experimental
evaluation and comparisons with existing approaches.

2. Related Work
We are not aware of any existing method that explicitly

solves both cosegmentation and dense correspondence re-
covery together. However, the motivation behind our work
is similar to that behind some recent cosegmentation meth-
ods [13, 17, 43]. We review those and other broadly related
works on cosegmentation and correspondence estimation.
Cosegmentation. Rubio et al. [43] formulate cosegmen-
tation in terms of region matching. However, the matches
are computed independently using graph matching [16] and
then exploited in their cosegmentation algorithm. Faktor
and Irani [17] describe a model where common foregrounds
in multiple images can be composed from interchangeable
image regions. Although region matching is a key element
of their method, it is primarily used to estimate unary po-
tentials (foreground/background likelihoods) for a standard
image segmentation method. While, Dai et al. [13] pro-
pose to cosegment images by matching foregrounds through
a codebook of deformable shape templates, it involves
learning a codebook requiring external background images.
While a notion of correspondence implicitly exists in all
these works, none of them explicitly compute dense corre-
spondence maps between the cosegmented regions, which
is an important distinction to our work.

Cosegmentation methods originally proposed by Rother

et al. [41] have been applied in broader settings [5, 24, 25,
32, 28, 52] and also on large sets of Internet images [42, 11].
Interesting convex formulations have also been proposed
for a variant of cosegmentation – the object co-localization
task [26, 46], which aims to find a bounding box around
related objects in multiple images.
Correspondence Estimation. SIFT Flow [36] generalizes
optic flow to images of different scenes and estimates com-
plete flow maps with 2D translations at every pixel. Their
energy function uses local matching costs based on dense
SIFT features, and smoothness terms encoding standard
pairwise potentials. SIFT Flow uses loopy belief propa-
gation (BP) [18] for inference in a coarse-to-fine pipeline
but other inference techniques [19, 53] have also been ex-
plored. HaCohen et al. [19] propose an extension of Patch-
Match [3, 4] that handles images of identical scenes with
large motions. However, their method is often unable to
handle different scenes as it lacks regularization on cor-
respondence fields. As another extension, DAISY filter
flow (DFF) [53] proposes to use efficient cost-volume fil-
tering [38] for enforcing smoothness, instead of adding ex-
plicit regularization. Deformable spatial pyramid (DSP)
matching [29] and its generalization [23] propose hierarchi-
cal regularization using a regular grid-cell pyramid for flow
estimation. Correspondence maps are parameterized us-
ing similarity transformations in [23] similarly to our work.
Images with scale differences are handled by [39, 21, 23].
Cosegmentation has been used to guide sparse feature cor-
respondence recovery [10]. However, such methods do not
aim to accurately segment common regions.
Hierarchical Models. To exploit multi-scale image cues
or to add flexible regularization, hierarchical conditional
random fields (CRFs) have been proposed for single im-
age segmentation [22], image matching [49], stereo cor-
respondence [33], and much recently for optic flow [34,
27] and more general correspondence estimation [29, 23].
These methods use precomputed hierarchical structures
such obtained by an external hierarchical oversegmentation
method [2], or spatial pyramids as used in DSP [29, 23].
Optimization Techniques. Discrete optimization is com-
monplace in stereo but often problematic in general dense
correspondence estimation because of the large label spaces
involved. For this issue, SIFT Flow [36] performs hierar-
chical BP [18] on the image pyramid from coarse to fine
levels using limited translation ranges. Recently, inspired
by randomization search and label propagation schemes of
PatchMatch [3, 4, 7], optimization methods using BP [6] or
graph cuts [48, 47] have been proposed for efficient infer-
ence in pairwise MRFs with large label spaces. However,
they are not directly applicable to our hierarchical model.
We extend graph cut techniques [48, 47] for our inference
task where we recover both the graph structure as well as
the labeling.

3. Proposed Model
Given two images I and I′ our goal is to find dense corre-

spondence and cosegmentation of a common object shown
in the two images. The reference image I is represented by
a set of superpixel nodes i ∈ V where Ωi ⊆ Ω denotes a
superpixel region in the image domain Ω ⊂ Z2.

In the reference image, we seek a labeling involving a
geometric transformation Ti ∈ T and a foreground alpha-
matte value αi ∈ [0, 1] for each superpixel i ∈ V . We for-
mulate this as a mapping function fi = f(i) : V → {T ×
[0, 1]} that assigns each node a pair of labels fi = (Ti, αi).
Here, αi is continuous during inference and binarized at the
final step1. Ti denotes a similarity transform parameterized
using a quadruplet (tu, tv, s, r). Slightly abusing the nota-
tion, we express the warped pixel location of p′ in the other
image as follows.

p′ = Ti(p) = sRr(p− ci) + ci + t. (1)

Here, ci is the centroid of pixels in region Ωi, and centering
at this point, p is rotated by the 2D rotation matrix Rr of
angle r and scaled by s, and then translated by t = (tu, tv).

In following sections we present the proposed model, by
first defining a standard 2D MRF model in Section 3.1 and
later generalizing it to a hierarchical model in Section 3.2.
We discuss the allowed hierarchical structure in Section 3.3.

3.1. Single Layer Model

Let L = (V,E) be a graphical representation of the im-
age I, where nodes i ∈ V and edges (i, j) ∈ E represent
superpixels and spatial neighbors, respectively. Given this
graph, our single layer model is defined as a standard 2D
MRF model:

Emrf(f |L) =λflo

∑
i∈V
E iflo(fi) + λseg

∑
i∈V
E iseg(fi)

+
∑

(s,t)∈E

wst Estreg(fs, ft), (2)

which consists of the flow data term, cosegmentation data
term and the spatial regularization term described below.
Flow Data Term. E iflo measures similarity between corre-
sponding regions in the image pair. We define it as

E iflo(fi) =
∑
p∈Ωi

[
αiρ(p,p′) + ᾱiλocc

]
, (3)

where ᾱi = 1− αi and λocc is a constant penalty for back-
ground pixels to avoid trivial solutions where all pixels are
labeled background. The ρ(p,p′) robustly measures visual
dissimilarity between p and its correspondence p′ as

ρ(p,p′) = min{‖D(p)−D′(p′))‖22, τD}, (4)
1To avoid degenerate flow solutions, we set αi always larger than 0.1

during inference. See supplementary for a detailed explanation.

Hierarchical graph Flow and alpha maps

…

…

… Pixel grids

Figure 2. Hierarchical model. Each layer (2D MRF) estimates a
dense flow and alpha map f , which is regularized by higher-level
estimates and the final estimates are obtained at the bottom layer.

where truncation using the threshold τD adds robustness.
D(p) is a local feature descriptor extracted at p in the im-
age I, and D′(p′) is extracted in I′2. We use a variant of the
HOG descriptor [14]. See Section 5.1 for the details.
Cosegmentation Data Term. The foreground and back-
ground likelihoods for each node are defined as follows.

E iseg(fi) = −
∑
p∈Ωi

[
αi lnP (Ip|θF) + ᾱi lnP (Ip|θB)

]
. (5)

Here, P (·|θ) is likelihood given a foreground or back-
ground color model {θF ,θB} of the image I, which is im-
plemented as 643 bins of RGB color histograms. The color
models are estimated during initialization (Section 5.3).
Spatial Regularization Term. The term Estreg encourages
flow and alpha values of neighboring nodes to be similar.

Estreg(fs, ft) =λst1 min{αs, αt}
∑

p∈Bst

ψst(p)/|Bst|

+λst2|αs − αt|. (6)

Here, Bst = ∂Ωs ∩ ∂Ωt is the set of pixels on the boundary
of two adjoining regions Ωs and Ωt, and ψst(p) penalizes
flow discontinuities at these pixels. It is defined as

ψst(p) = min{‖Ts(p)−Tt(p)‖2, τst}. (7)

If α were binary, then the first term in Eq. (6) would en-
force flow smoothness when two adjoining regions are la-
beled foreground (αs=αt=1), and the second term would
give a constant penalty λst2 only when αs 6= αt. However,
Eq. (6) generalizes this idea to continuous valued α.

3.2. Hierarchical Model

Now we introduce the notion of a layered graph and
generalize the single layer model to a full hierarchi-
cal model. As illustrated in Figure 2, our hierarchical
graph G = (V,E) consists of multiple layered subgraphs
{L0, L1, · · · , LH}. Each layer Ll = (Vl, El) represents a

2As suggested in [23, 53], D′(p′) can be more accurately computed
by using the scale s and rotation r of the similarity transformation Ti.

superpixel graph of the image. In addition to spatial edges
within each layer El, our hierarchy G contains parent-child
edges (p, c) ∈ Epc

l that connect parent nodes p ∈ Vl to their
children nodes c ∈ Vl−1 (green edges in Figure 2).

Using a layered graph G and the model Emrf(f |L) de-
fined in Eq. (2), we define our hierarchical model as

E(f,G) =
H∑
l=0

[
Emrf(f |Ll) + E lreg(f |G) + E lgra(Vl)

]
. (8)

Here, we treat the hierarchical graph G as a variable that is
dynamically estimated together with f . Our construction is
fundamentally different from prior work [23, 27, 29], where
the hierarchical structure is computed before flow inference.
Multi-layer Regularization Term. Similar to the spa-
tial regularization term in Eq. (6), the term E lreg enforces
smoothness between parent child pairs of Vl and Vl−1 as

E lreg(f |G) =
∑

(p,c)∈Epc
l

wpc Epcreg(fp, fc), (9)

where Epcreg is defined using Eq. (7) and c’s centroid cc as

Epcreg(fp, fc) = λpc1 min{αp, αc}ψpc(cc) + λpc2|αp − αc|.
(10)

Graph Validity Term. The term E lgra measures validity of
the layer structure Vl as

E lgra(Vl) = λnodβ
l|Vl| − λcol

∑
i∈Vl

∑
p∈Ωi

lnP (Ip|θi). (11)

The first term reduces nodes in the higher layers. We set
β = 2 to reduce the node count approximately by half at
each layer. The second term enforces color consistencies
within each region Ωi. θi represents the RGB color his-
togram of the region Ωi. Our definition of Eq. (11) is moti-
vated by work in multi-region segmentation [15].

3.3. Hierarchical Structure

Here we describe the form of hierarchical graphs allowed
in our method. The nodes i ∈ Vl in each layer divide the
image domain Ω into |Vl| connected regions Ωi ⊆ Ω. Our
hierarchical superpixels have a nested (or tree) structure,
i.e., a superpixel (parent) in a layer Vl consists of the union
of superpixels (children) in its sublayer Vl−1. The lowest
layer V0 named the pixel layer is special because each node
i ∈ V0 represents a pixel pi ∈ Ω. The finest region layer V1

has about 500 nodes which are set to SLIC superpixels [1].
For parent-child edges (p, c) ∈ Epc

l (l = 1, · · · , H), the
edge weights wpc are assigned to the area of child regions

wpc = |Ωc|. (12)

At the two lowest layers (l = 0, 1), edges (s, t) ∈ El be-
tween adjoining nodes are assigned edge weights wst as

wst = e−‖Is−It‖
2
2/κ, (13)

where Ii ∈ R3 is the mean color of the region Ωi. Following
[40], we set κ to the expected value of 2‖Is − It‖22 over
(s, t) ∈ El. For the upper layers (l ≥ 2), the edge weights
wst are set to the sum of the children’s edge weights as

wst =
∑

ws′t′ , (14)

where (s′, t′) ∈ El−1 are children of s and t, respectively.

4. Optimization
Optimizing E(f,G) in Eq. (8) has two main difficulties.

1) The joint inference of f and G is intractable due to the
dependency of f on G. 2) The label space of f resides in
a 5-dimensional continuous domain and the number of can-
didate labels is essentially infinite. To practically address
these issues, we propose two-pass bottom-up and top-down
optimizing procedures that approximately optimize the en-
ergy. In the bottom-up phase, we construct a hierarchical
structure G by incrementally adding layers from lower to
higher levels, while simultaneously estimating the label-
ing f . In the top-down phase, we refine the labeling f while
keeping the structure G fixed. The optimization procedure
is summarized in Algorithm 1. Next we discuss the details.

4.1. Bottom-Up Hierarchy Construction

To formally describe our bottom-up procedure, we de-
note Gk = (V k, Ek) as a hierarchy consisting of k+1 lay-
ered subgraphs {L0, · · · , Lk} where Ll = (Vl, El). We
also define it sequentially, i.e., Gk andGk+1 share the same
structure for the bottom k+1 layers.

At a high level, our bottom-up procedure is presented
as a sequence of subtasks, where given a current solu-
tion {f,Gk} we estimate {f,Gk+1} as illustrated in Fig-
ures 3 (a) and (d), respectively. We estimate {f,Gk+1} as
approximate minimizers of E(f,Gk+1) in Eq. (8). Here,
E(f,Gk+1) given Gk can be separated into two parts

E(f,Gk+1) = E(f |Gk) + Etop(f, Lk+1), (15)

where E(f |Gk) is energy involved in the known graph Gk

while Etop(f, Lk+1) refers to the unknown top layer Lk+1.

Etop(f, Lk+1)=Emrf(f |Lk+1)+Ek+1
reg (f |Gk+1)+Ek+1

gra (Vk+1).
(16)

Jointly inferring Gk+1 and its labeling f is difficult. There-
fore, we assume a known temporary graph Ĝk+1 for un-
known Gk+1, and we replace this joint problem by a sim-
pler labeling problem f̂ on Ĝk+1.

Ê(f̂ |Ĝk+1) = E(f̂ |Gk) +A(f̂). (17)

Here, E(f̂ |Gk) is equivalent to E(f |Gk) in Eq. (15), and A
is an approximation of the top layer energy Etop.

In following three sections, we detail lines 4–10 of Algo-
rithm 1 and explain how we derive Ê(f̂ |Ĝk+1), optimize it,
and obtain the desired solution {f,Gk+1} from {f̂ , Ĝk+1}.

Optimization on temporary graph

(a) Graph Gk and its labeling f (b) Temporary graph Ĝk+1 (c) Ĝk+1 and optimized labeling f̂ (d) Graph Gk+1 with new layer

Figure 3. Bottom-up Graph Construction (one step). Each rectangular cell in the illustration represents a node i ∈ Vl and a set of
contiguous cells represents a graph layer Vl. The arrows and colors denote flow and alpha labels fi (red: foreground, blue: background).
(a) Graph Gk and its labeling f . (b) By duplicating the top layer Vk of Gk, we create a temporary graph Ĝk+1 as an approximation of
Gk+1. (c) We optimize the labeling f̂ on Ĝk+1. The number of unique labels in V ′

k is reduced by label costs [15] to induce region merging.
(d) V ′

k is converted into a new layer Vk+1, by merging nodes of V ′
k assigned the same label that form connected components in Ĝk+1.

Energy Approximation using Temporary Graphs

We now briefly explain the conversion from E(f,Gk+1) in
Eq. (15) to Ê(f̂ |Ĝk+1) in Eq. (17). For detailed derivations,
please refer to the supplementary material.

To relax the joint inference of E(f,Gk+1), we create a
temporary graph Ĝk+1 as an approximation of Gk+1, by
duplicating the top layer of Gk as L′k = (V ′k, E

′
k) ←

(Vk, Ek) (line 4 of Algorithm 1). We illustrate Gk and
Ĝk+1 in Figures 3 (a) and (b), respectively. Here, a label-
ing f̂ on Ĝk+1 (or V ′k) can equivalently express all possible
f on Gk+1 (or Vk+1), because V ′k is the finest form of any
possible Vk+1. The labeling f̂ is copied from f at line 5.

Substituting Gk+1 ← Ĝk+1 into E(f,Gk+1), we derive
its approximation Ê(f̂ |Ĝk+1) in Eq. (17) with followingA.

A(f̂) = Emrf(f̂ |L′k)+Ek+1
reg (f̂ |Ĝk+1)+Ek+1

gra (f̂ |V ′k). (18)

The conversion from Etop in Eq. (16) to this A is provably
exact except for only terms Ek+1

gra and Estreg in Emrf of Eq. (2).
Here, conversion of Ek+1

gra is tricky because we need to con-
vert variables from Vk+1 to a labeling f̂ on V ′k . We observe
that the region of each node i ∈ Vk+1 should optimally 1)
be a connected component, 2) assigned a single label unique
from neighbors, and 3) be the union of regions in V ′k . Thus,
we can treat nodes i ∈ Vk+1 as connected components Ci
of nodes in V ′k assigned the same label, i.e.,

Vk+1 ≡
{
Ci

∣∣∣ nodes ∀c∈Ci in V ′k are assigned
the same label f̂c and connected.

}
. (19)

This property allows us to rewrite Ek+1
gra (Vk+1) in Eq. (11)

as a function of f̂ . To further make inference tractable, we
relax the connectivity of |Vk+1| and treat |Vk+1| as label
costs [15] of f̂ , i.e., the number of unique labels f̂i in V ′k
without considering their spatial connections. In this man-
ner, the formulation of Eq. (11) becomes the same as that of
multi-region segmentation [15]. Following their model fit-
ting approach based on alpha expansion moves [9], we treat
the label costs and the likelihood terms of Eq. (11) as pair-
wise submodular terms and unary terms, respectively. See
more discussions in the supplementary.

Algorithm 1: TWO-PASS OPTIMIZATION PROCESS

input : Two images I, I′

output : Hierarchical graph G and flow-alpha map f
1 Initialize the graph: G← G1

2 Initialize the labeling f and color models θF ,θB (Sec. 5.3)
3 for k = 1, 2, · · · do ♦ bottom-up graph construction ♦
4 Create temporary Ĝk+1 by duplicating Vk of Gk ;
5 Initialize temporary f̂ by copying labels from f ;
6 Perform local expansion moves (Ê ,f̂ , Ĝk+1, V ′

k)
f̂ ← argmin Ê(f̂ |Ĝk+1) ;

7 Create Gk+1 by merging nodes of V ′
k in Ĝk+1 ;

8 if rejection criterion is met then break;
9 Update solution {f,G} ← {f̂ , Gk+1} ;

10 if any stopping criteria is met then break;
11 end
12 for k = H, · · · , 1 do ♦ top-down label refinement ♦
13 Perform local expansion moves (E , f , G, Vk)

f ← argmin E(f |G) with fi fixed for ∀i ∈ Vl>k ;
14 end

Algorithm 2: LOCAL EXPANSION MOVES [48, 47]
argments: (model E , labeling f , graph G, target layer VT)

1 for each target node i ∈ VT do
2 Make neighborhood: Ni←{i’s neighbors}∪{i} ;
3 Make expansion region: Ri←{Ni’s descendants}∪Ni ;
4 for each candidate proposer do
5 Generate a candidate label ` = (T, α) ;
6 Apply a local expansion move using min-cut:

f ← argmin E(f |G) with fj ∈ {fj , `} for
j ∈ Ri

7 end
8 end
9 return f ;

Optimization of Approximation Energy

In Figure 3 (c) and at line 6 of Algorithm 1, we minimize the
approximation energy Ê(f̂ |Ĝk+1) of Eq. (17) with known
Ĝk+1. To efficiently infer the continuous 5dof labels in f̂ ,
we use the local expansion move method of [48, 47].

In its general form, the local expansion move algorithm
repeatedly solves the following binary labeling problem for
each target node i ∈ V visited in sequence.

f (t+1) = argmin E(f |fj ∈ {f (t)
j , `} for j ∈ Ri). (20)

Here, Ri ⊂ V is a set of local nodes around the target node
i (named expansion region), and this operation tries to im-
prove the labels of the local nodes j ∈ Ri by assigning them
either their current label f (t)

j or a candidate label `. We use
graph cuts [8] to solve this binary problem.

Our version of local expansion moves is summarized in
Algorithm 2. During the bottom-up process, we randomly
visit all nodes in the top layer V ′k (i.e., target layer VT) at
line 1, and update the labeling of local nodes. In order to ap-
ply the local expansion move algorithm for our hierarchical
MRF model, we extended it in two ways. First, the expan-
sion region Ri is extended from i’s neighbors (Ni at line 2)
to include all their descendants (line 3). Second, when gen-
erating candidate labels ` for the target node i (line 5), we
use four types of candidate proposers listed below.
• Expansion proposer generates a label by copying the cur-

rent label as ` ← fi. This tries to propagate the current
label fi to nearby nodes in Ri as explained in [48].

• Cross-view proposer refers to the current labeling f ′ of
the other image, and uses a label f ′i′ that gives warping to
the target node region Ωi as a candidate `, using inverse
warp of f ′i′ . This is similar to view propagation in [7, 6].

• Merging proposer generates labels ` ← wifi + wjfj as
weighted sums of i’s current label fi and its neighbors’
labels fj , j ∈ Ni. The weights wi, wj ∈ [0, 1] are pro-
portional to their region sizes |Ωi|, |Ωj |. This is a new
extension for promoting better region merging.

• Perturbation proposer generates labels ` ← fi + ∆ by
randomly perturbing the current label fi. Similarly to
[48, 7], we iterate between lines 5 and 6 several times
while reducing the perturbation size |∆| by half.

Incremental Layer Construction

In Figure 3 (d) and at line 7 of Algorithm 1, we create a new
graph Gk+1 by merging nodes of V ′k in Ĝk+1. Here, Vk+1

is created from V ′k and f̂ using the variable conversion of
Eq. (19). After merging regions, we check the number of
new foreground regions at the top layer. If it is zero (line 8),
we reject the new solution and stop the graph construction
process. Otherwise, we adopt the new solution {f̂ , Gk+1}
as {f,G} (line 9). Later we check the foreground count
again and if it is one or not reduced from the previous itera-
tion (line 10), we stop the graph construction process.

4.2. Top-Down Labeling Refinement

After the bottom-up phase, we further refine the labeling
f during the top-down phase shown at lines 12–14 of Algo-

rithm 1. Since G is held fixed during this step, we can di-
rectly optimize E(f |G) using local expansion moves with-
out requiring the energy conversion described in Sec. 4.1.
During this phase, we visit layers Vk inG in top-down order
(from k=H to k=1) and apply local expansion moves with
Vk as a target layer VT . Here, the labeling f for the higher
layers Vl (l > k) does not change, because the expansion
regions Ri only contain nodes in layers Vk and below.

5. Implementation Details
We now discuss initialization steps and features used in

our method. See the supplementary material for details.

5.1. Local HOG Features

The images are first resized so that their larger dimension
becomes 512 pixels. A Gaussian pyramid is then built for
each image (we use 1 octave and 1 sub-octave). From each
pyramid layer, we densely extract local histogram of gradi-
ent (HOG) feature descriptors [14]. These features are ex-
tracted at every pixel on the image grid from patches of size
27 × 27 pixels. Our HOG descriptors are 96-dimensional.
We use a 3×3 cell grid for each patch and 16 equally spaced
bins for the oriented gradient histograms. Each gradient
histogram thus has 16 bins for signed gradients and 8 bins
for unsigned gradients. The histograms for each contiguous
2 × 2 block of the 3 × 3 cell grid are aggregated to form
a 24-dimensional vector. These are then L2-normalized
followed by element-wise truncation (using a threshold of
0.5). Four such vectors are concatenated to form the final
96-dimensional HOG descriptor. These HOG features are
used to compute the flow data terms E iflo described earlier.
They are also used to construct bag of visual words (BoW)
histogram features required during the initialization stage.

5.2. BoW Histogram Features

Each HOG descriptor is vector-quantized using a K-
means codebook of size 256. Next, BoW histograms are
computed from several overlapping image patches of size
64 × 64 pixels. These patches are sampled every 4 pixels
(both horizontally and vertically) in the image. We use inte-
gral images (one per visual word) to speed up the BoW his-
togram computation. All the visual words are aggregated
into a histogram. This is repeated for 2×2 sub-regions.
The five BoW histograms are then L2-normalized followed
by element-wise square root normalization3. The 256-
dimensional histograms are concatenated to form 1280-
dimensional BoW histogram features.

5.3. Initialization

During initialization, initial flow candidates and fore-
ground/background color models for each image are com-

3This is equivalent to using a Hellinger kernel instead of the Euclidean
distance to measure the similarity of two feature vectors.

Figure 4. Min/Max ratios of BoW feature matching distances in
local windows (middle). Low ratios (blue) are likely to suggest
foreground. Geodesic distances from the image boundary (right)
are used to add background clues (black regions).

puted as follows. First, dense matching is done using the
BoW features at three levels in the image pyramid. The
Euclidean distances between each pixel feature in the first
image and features for all pixels within a search window in
the second image are computed. Fortunately this is quite
fast due to the sparsity of the BoW features. The best match
is stored as a flow candidate. The ratio of the Euclidean
distances of the best and worst match is computed. We use
this heuristic to predict the probability of a true match, mo-
tivated by the ratio test [37] (see Figure 4).

Areas with high and low match probabilities are
likely to be the “foreground” and “background” respec-
tively. By thresholding the ratio values, we create fore-
ground/background soft seeds and initial segmentations as
input to GrabCut [40] and learn color models {θF ,θB} for
each image. Geodesic distance from the image boundary
is used as an additional unary background likelihood term
(Figure 4, right). See the supplementary material for details.

5.4. Efficient Implementation

Three key ideas allow our optimization method to be effi-
ciently implemented. First, unary terms E iflo(fi) and E iseg(fi)
in Eq. (2) can be efficiently computed using the tree struc-
ture of G. Specifically, the unary cost Ep(`) of a node
p ∈ Vl is computed as the sum

∑
c Ec(`) over its children

c ∈ Vl−1, if their labels ` are the same. This constant-label
property is satisfied during local expansion moves because
the candidate label ` is the same for all nodes in an expan-
sion region Ri. Thus, at line 6 of Algorithm 2, we compute
the unary costs Ej(`) for j ∈ Ri by sequentially summing
them up from bottom to top layer nodes. Second, we ex-
clude the pixel layer L0 / V0 from the graph G during the
main iterations. We add it to G just before the last refine-
ment step in the top-down phase (k = 1 at line 13 of Al-
gorithm 1). Finally, we use efficient graph cuts [8] at line
6 of Algorithm 2, instead of QPBO [30]. This is possible
because our energy is submodular under (local) expansion
moves [48, 47]. The proofs are in the supplementary.

6. Experiments

We evaluate our method for flow and segmentation accu-
racy and compare it to existing methods on our new dataset.
Dataset. Our dataset comprises of 400 image pairs divided

into three groups – FG3DCar contains 195 image pairs of
vehicles from [35]. JODS contains 81 image pairs of air-
planes, horses, and cars from [42]. PASCAL contains 124
image pairs of bicycles, motorbikes, buses, cars, trains from
[20]. See Figure 6 for some examples from each group.
Flow accuracy. We evaluate flow accuracy by the percent-
age of pixels in the true foreground region that have an error
measure below a certain threshold. Here, we compute the
absolute flow endpoint error (i.e., the Euclidean distance be-
tween estimated and true flow vectors) in a normalized scale
where the larger dimensions of images are 100 pixels.
Segmentation accuracy. We use the standard intersection-
over-union ratio metric for segmentation accuracy. As exist-
ing flow estimation methods do not recover common fore-
ground regions, we compute them by post-processing the
estimated flow maps. Specifically, given the two flow maps,
we do a left-right consistency check with a suitable thresh-
old and treat pixels that pass this test as foreground.
Settings. We strictly fixed all the parameters through-
out the experiments as follows. For the data and graph
term parameters, we set {λflo, λocc, τD, λseg, λnod, λcol} ←
{0.25, 2.4, 6.5, 0.8, 125, 1}. For regularization parameters
{λst1, λst2, τst, λpc1, λpc2, τpc} associated with the pixel layer
(edges E0 and Epc

1) we use {0.5, 20, 20, 0.005, 10, 200},
and for the other edges we use {0.1, 4, 20, 0.04, 8, 200}.
See the supplementary material for our strategy of tuning
parameters. Our method is implemented using C++ and run
by a single thread on a Core i7 CPU of 3.5 GHz.

6.1. Comparison with Existing Approaches

For correspondence, we compare our method with SIFT
Flow [36], DSP [29] and DFF [53]4. We also evaluate our
method using only the single layer model without hierarchy,
which can be done by skipping the bottom-up construction
step in Algorithm 1. This single layer method can be seen
as a variant of [48]. For cosegmentation, we compare our
method with Joulin et al. [24]5 and Faktor and Irani [17]
based only on segmentation accuracies6. We summarize
average accuracy scores for each subset in the upper part
of Table 1, where flow accuracy is evaluated using a thresh-
old of 5 pixels. The plots in Figure 5 show average flow
accuracies with varying thresholds. As shown here, our
method achieves the best performance on all three groups at
all thresholds. Our average flow accuracies for FG3DCar,
JODS and PASCAL, respectively, are up to 45%, 19% and
34% higher than SIFT Flow (best existing method). Su-

4We omit results of HaCohen et al. [19] for its low performance on our
dataset. It could not find any correspondence for many image pairs.

5 For Joulin et al. [24] that cannot identify the “foreground” label from
{0, 1}, we refer to ground truth and choose for each image pair either 0
or 1 to maximize the scores. Results of their extension method [25] are
omitted since we could not observe improvemnts over [24] in our settings.

6We omit results of Dai et al. [13] as it did not work for many image
pairs. The method seems to fail in finding matches with learned templates.

Table 1. Benchmark results. FAcc is flow accuracy rate for an error thresh-
old of 5 pixels in a normalized scale. SAcc is segmentation accuracy by
intersection-over-union ratios. SAcc scores (?) of optic flow mothods are
computed by post-processing using left right consistency check.

Optic flow / FG3DCar JODS PASCAL
cosegment. Methods FAcc SAcc FAcc SAcc FAcc SAcc

Ours 0.829 0.756 0.595 0.504 0.483 0.649
Our single layer ([48]) 0.727 0.757 0.473 0.499 0.414 0.616
SIFT Flow [36] 0.634 (0.420) 0.522 (0.241) 0.453 (0.407)
DSP [29] 0.487 (0.285) 0.465 (0.219) 0.382 (0.336)
DFF [53] 0.493 (0.326) 0.303 (0.207) 0.224 (0.207)

Faktor and Irani [17] – 0.689 – 0.544 – 0.500
Joulin et al. [24] – 0.461 – 0.320 – 0.400

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 5 10 15
Error threshold [pixels]

FG3DCar

Ours
Single layer
SIFT Flow
DSP
DFF

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5 10 15
Error threshold [pixels]

JODS

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15
Error threshold [pixels]

PASCAL

Figure 5. Average flow accuracies evaluated by endpoint er-
rors with varying thresholds. Ours always shows best scores.
DFF [53] is not robust due to lack of explicit regularization.

Input Ground Truth

Figure 6. Dataset.

Ours SIFT Flow [36] DSP [29]

Figure 7. Correspondence results.

Ours Faktor et al. [17] Joulin et al. [24]

Figure 8. Cosegmentation results.

perior results to our single layer method shows the effec-
tiveness of our hierarchical model and inference. DFF [53]
cannot handle large appearance differences of objects due
to lack of explicit regularization. We show qualitative com-
parisons with SIFT Flow [36] and DSP [29] in Figure 7.

We report average segmentation scores in the lower part
of Table 1. Figure 8 shows qualitative comparisons with
Faktor and Irani [17] and Joulin et al. [24]. Although our
model for segmentation is quite simple compared to other
methods, our method is competitive or has higher accuracy
due to joint inference of foreground correspondence.

Running time of our method is about 7 minutes for ob-
taining a pair of flow-alpha maps of 512 × 384 pixels, in-
cluding 1 minute for the feature extraction and initialization,
3 minutes for the final refinement step with the pixel layer.

7. Conclusion
We have presented a joint method for cosegmentation

and dense correspondence estimation in two images. Our
method uses a hierarchical MRF model and jointly infers
the hierarchy as well as segmentation and correspondence
using iterated graph cuts. Our method outperforms a num-
ber of methods designed specifically either for correspon-
dence recovery [36, 29, 19, 53] or cosegmentation [24, 25,
17, 13]. We provide a new dataset for quantitative evalu-
ation. Enforcing left-right consistencies on flow and seg-
mentation maps for two images, or by using multiple im-
ages [12, 55, 25] are promising avenues for future work.
Acknowledgments. We thank Richard Szeliski, Pushmeet
Kohli and Tianfan Xue for valuable feedback. T. Taniai
was partially supported by JSPS KAKENHI Grant Number
14J09001 and a Microsoft Research Asia PhD fellowship.

References
[1] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and

S. Sustrunk. Slic superpixels compared to state-of-the-art
superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell.
(TPAMI), 34(11):2274–2282, 2012.

[2] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour
detection and hierarchical image segmentation. IEEE Trans.
Pattern Anal. Mach. Intell. (TPAMI), 33(5):898–916, 2011.

[3] C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Gold-
man. PatchMatch: a randomized correspondence algo-
rithm for structural image editing. ACM Trans. on Graph.,
28(3):24:1–24:11, 2009.

[4] C. Barnes, E. Shechtman, D. B. Goldman, and A. Finkel-
stein. The generalized patchmatch correspondence algo-
rithm. In Proc. of European Conf. on Computer Vision
(ECCV), pages 29–43, 2010.

[5] D. Batra, C. M. Univerity, A. Kowdle, D. Parikh, J. Luo, and
T. Chen. icoseg: Interactive co-segmentation with intelligent
scribble guidance. In Proc. of IEEE Conf. on Computer Vi-
sion and Pattern Recognition (CVPR), 2010.

[6] F. Besse, C. Rother, A. W. Fitzgibbon, and J. Kautz. PMBP:
patchmatch belief propagation for correspondence field es-
timation. Int’l Journal of Computer Vision, 110(1):2–13,
2014.

[7] M. Bleyer, C. Rhemann, and C. Rother. PatchMatch Stereo
- Stereo Matching with Slanted Support Windows. In Proc.
of British Machine Vision Conf. (BMVC), pages 14.1–14.11,
2011.

[8] Y. Boykov and V. Kolmogorov. An experimental comparison
of min-cut/max- flow algorithms for energy minimization in
vision. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI),
26(9):1124–1137, 2004.

[9] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate en-
ergy minimization via graph cuts. IEEE Trans. Pattern Anal.
Mach. Intell. (TPAMI), 23(11):1222–1239, 2001.

[10] J. Cech, J. Matas, and M. Perdoch. Efficient sequential corre-
spondence selection by cosegmentation. IEEE Trans. Pattern
Anal. Mach. Intell. (TPAMI), 32(9):1568–1581, 2010.

[11] X. Chen, A. Shrivastava, and A. Gupta. Enriching visual
knowledge bases via object discovery and segmentation. In
Proc. of IEEE Conf. on Computer Vision and Pattern Recog-
nition (CVPR), pages 2035–2042, 2014.

[12] M. Cho, S. Kwak, C. Schmid, and J. Ponce. Unsupervised
object discovery and localization in the wild: Part-based
matching with bottom-up region proposals. In Proc. of IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR),
pages 1201–1210, 2015.

[13] J. Dai, Y. N. Wu, J. Zhou, and S.-C. Zhu. Cosegmenta-
tion and cosketch by unsupervised learning. In Proc. of Int’l
Conf. on Computer Vision (ICCV), pages 1305–1312, 2013.

[14] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In Proc. of IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), pages 886–893, 2005.

[15] A. Delong, A. Osokin, H. N. Isack, and Y. Boykov. Fast ap-
proximate energy minimization with label costs. Int’l Jour-
nal of Computer Vision, 96(1):1–27, 2012.

[16] O. Duchenne, F. Bach, I.-S. Kweon, and J. Ponce. A
tensor-based algorithm for high-order graph matching. IEEE
Trans. Pattern Anal. Mach. Intell. (TPAMI), 33(12):2383–

2395, 2011.
[17] A. Faktor and M. Irani. Co-segmentation by composition.

In Proc. of Int’l Conf. on Computer Vision (ICCV), pages
1297–1304, 2013.

[18] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient belief
propagation for early vision. Int’l Journal of Computer Vi-
sion, 70(1):41–54, 2006.

[19] Y. HaCohen, E. Shechtman, D. B. Goldman, and D. Lischin-
ski. Non-rigid dense correspondence with applications for
image enhancement. ACM Trans. on Graph., 30(4):70:1–
70:10, July 2011.

[20] B. Hariharan, P. Arbelaez, L. Bourdev, S. Maji, and J. Malik.
Semantic contours from inverse detectors. In Proc. of Int’l
Conf. on Computer Vision (ICCV), 2011.

[21] T. Hassner, V. Mayzels, and L. Zelnik-Manor. On sifts and
their scales. In Proc. of IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2012.

[22] X. He, R. S. Zemel, and M. Á. Carreira-Perpiñán. Multi-
scale conditional random fields for image labeling. In Proc.
of IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), volume 2, pages 695–702, 2004.

[23] J. Hur, H. Lim, C. Park, and S. C. Ahn. Generalized de-
formable spatial pyramid: Geometry-preserving dense corre-
spondence estimation. In Proc. of IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), pages 1392–1400,
2015.

[24] A. Joulin, F. Bach, and J. Ponce. Discriminative clustering
for image co-segmentation. In Proc. of IEEE Conf. on Com-
puter Vision and Pattern Recognition (CVPR), 2010.

[25] A. Joulin, F. Bach, and J. Ponce. Multi-class cosegmenta-
tion. In Proc. of IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2012.

[26] A. Joulin, K. Tang, and L. Fei-Fei. Efficient image and video
co-localization with frank-wolfe algorithm. In Proc. of Eu-
ropean Conf. on Computer Vision (ECCV), 2014.

[27] R. Kennedy and C. J. Taylor. Hierarchically-constrained op-
tical flow. In Proc. of IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), June 2015.

[28] G. Kim, E. P. Xing, L. Fei-Fei, and T. Kanade. Distributed
cosegmentation via submodular optimization on anisotropic
diffusion. In Proc. of Int’l Conf. on Computer Vision (ICCV),
pages 169–176. IEEE, 2011.

[29] J. Kim, C. Liu, F. Sha, and K. Grauman. Deformable spatial
pyramid matching for fast dense correspondences. In Proc.
of IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), pages 2307–2314, 2013.

[30] V. Kolmogorov and C. Rother. Minimizing nonsubmodu-
lar functions with graph cuts-a review. IEEE Trans. Pattern
Anal. Mach. Intell. (TPAMI), 29(7):1274–1279, 2007.

[31] V. Kolmogorov and R. Zabin. What energy functions can be
minimized via graph cuts? IEEE Trans. Pattern Anal. Mach.
Intell. (TPAMI), 26(2):147–159, 2004.

[32] A. Kowdle, S. N. Sinha, and R. Szeliski. Multiple view ob-
ject cosegmentation using appearance and stereo cues. In
Proc. of European Conf. on Computer Vision (ECCV), pages
789–803. Springer Berlin Heidelberg, 2012.

[33] C. Lei, J. Selzer, and Y.-H. Yang. Region-tree based stereo
using dynamic programming optimization. In Proc. of IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR),

volume 2, pages 2378–2385, 2006.
[34] C. Lei and Y.-H. Yang. Optical flow estimation on coarse-to-

fine region-trees using discrete optimization. In Proc. of Int’l
Conf. on Computer Vision (ICCV), pages 1562–1569. IEEE,
2009.

[35] Y.-L. Lin, V. I. Morariu, W. Hsu, and L. S. Davis. Jointly op-
timizing 3d model fitting and fine-grained classification. In
Proc. of European Conf. on Computer Vision (ECCV), 2014.

[36] C. Liu, J. Yuen, and A. Torralba. SIFT Flow: Dense Corre-
spondence across Scenes and Its Applications. IEEE Trans.
Pattern Anal. Mach. Intell. (TPAMI), 33(5):978–994, 2011.

[37] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. Int’l Journal of Computer Vision, 60(2):91–110,
Nov. 2004.

[38] J. Lu, H. Yang, D. Min, and M. N. Do. Patch match filter:
Efficient edge-aware filtering meets randomized search for
fast correspondence field estimation. In Proc. of IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), pages
1854–1861, 2013.

[39] W. Qiu, X. Wang, X. Bai, Z. Tu, et al. Scale-space sift flow.
In 2014 IEEE Winter Conference on Applications of Com-
puter Vision (WACV), pages 1112–1119. IEEE, 2014.

[40] C. Rother, V. Kolmogorov, and A. Blake. “grabcut”: Inter-
active foreground extraction using iterated graph cuts. ACM
Trans. on Graph., 23(3):309–314, 2004.

[41] C. Rother, T. P. Minka, A. Blake, and V. Kolmogorov. Coseg-
mentation of image pairs by histogram matching - incorpo-
rating a global constraint into mrfs. In Proc. of IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), pages
993–1000, 2006.

[42] M. Rubinstein, A. Joulin, J. Kopf, and C. Liu. Unsuper-
vised joint object discovery and segmentation in internet im-
ages. In Proc. of IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), pages 1939–1946, 2013.

[43] J. C. Rubio, J. Serrat, A. Lopez, and N. Paragios. Unsu-
pervised co-segmentation through region matching. In Proc.
of IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), pages 749–756, 2012.

[44] R. Sibson. A Brief Description of Natural Neighbour Inter-
polation. In Interpreting multivariate data, chapter 2, pages
21–36. John Wiley & Sons, 1981.

[45] J. Sivic, B. C. Russell, A. Efros, A. Zisserman, W. T. Free-
man, et al. Discovering objects and their location in im-
ages. In Proc. of IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), volume 1, pages 370–377, 2005.

[46] K. Tang, A. Joulin, L.-J. Li, and L. Fei-Fei. Co-localization
in real-world images. In Proc. of IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), 2014.

[47] T. Taniai, Y. Matsushita, and T. Naemura. Graph cut based
continuous stereo matching using locally shared labels. In
Proc. of IEEE Conf. on Computer Vision and Pattern Recog-
nition (CVPR), pages 1613–1620, 2014.

[48] T. Taniai, Y. Matsushita, Y. Sato, and T. Naemura. Con-
tinuous Stereo Matching Using Local Expansion Moves.
arXiv:1603.08328, http://arxiv.org/abs/1603.
08328, 2016.

[49] S. Todorovic and N. Ahuja. Region-based hierarchical image
matching. Int’l Journal of Computer Vision, 78(1):47–66,
2008.

[50] T. Tuytelaars, C. H. Lampert, M. B. Blaschko, and W. Bun-
tine. Unsupervised object discovery: A comparison. Int’l
Journal of Computer Vision, 88(2):284–302, 2010.

[51] S. Vicente, J. Carreira, L. Agapito, and J. Batista. Recon-
structing PASCAL VOC. In Proc. of IEEE Conf. on Com-
puter Vision and Pattern Recognition (CVPR), pages 41–48,
2014.

[52] S. Vicente, C. Rother, and V. Kolmogorov. Object coseg-
mentation. In Proc. of IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), pages 2217–2224, 2011.

[53] H. Yang, W. Lin, and J. Lu. DAISY filter flow: A general-
ized discrete approach to dense correspondences. In Proc.
of IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), pages 3406–3413, 2014.

[54] C. Zhang, C. Shen, and T. Shen. Unsupervised feature learn-
ing for dense correspondences across scenes. Int’l Journal
of Computer Vision, pages 1–18, 2015.

[55] T. Zhou, Y. J. Lee, S. X. Yu, and A. A. Efros. Flowweb:
Joint image set alignment by weaving consistent, pixel-wise
correspondences. In Proc. of IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), pages 1191–1200, 2015.

http://arxiv.org/abs/1603.08328
http://arxiv.org/abs/1603.08328

Joint Recovery of Dense Correspondence and Cosegmentation in Two Images
— Supplementary Material —

Tatsunori Taniai
The University of Tokyo

Sudipta N. Sinha
Microsoft Research

Yoichi Sato
The University of Tokyo

In the supplementary material we present derivations and proofs associated with the proposed technique that were omitted
from the main paper due to lack of space. Some additional notes and implementation details are also provided. We will be
referring to certain equations and figures in the main paper. Please note that the new equations and figures provided in the
supplementary material have numbers with the letter A as prefix to distinguish them from those in the main paper. We also
provide additional qualitative comparisons as a supplementary video on our project website.

A. Continuous Alpha Map Formulation

Here, we explain why in our method, the per-pixel segmentation labels must be continuous alpha-matte values α ∈ [0, 1]

rather than binary values {0, 1}. If α were binary, the flows Ti at nodes labeled background (αi = 0) would be under-
constrained, because the flow data term E iflo in Eq. (3) at such nodes would always be a constant λocc regardless of the values
of Ti. This would be problematic, because if true foreground nodes are incorrectly labeled background in early stages of
our inference process, it would be harder to recover their true flow labels in later iterations. To avoid this issue, we require
α to be a continuous value that is larger than a small positive value (0.1 in our implementation). By doing this we will
have meaningful flow labels Ti even at nodes labeled (incorrectly) background, because those flow labels still slightly affect
matching energies of E iflo.

B. Energy Approximation

Next, we present the derivations of our approximation energy described in Section 4.1.
We first derive the energy function E(f,Gk+1) in the form of Eq. (15). In order to simplify the energy formulation in

Eq. (8), we denote energies involved in each layer as

E llay(f,G) = Emrf(f |Ll) + E lreg(f |G) + E lgra(Vl) (A1)

and rewrite the energy function E(f,Gk+1) as the sum of layer energies

E(f,Gk+1) =
k+1∑
l=0

E llay(f,Gk+1) (A2)

=
k∑
l=0

E llay(f,Gk) + Ek+1
lay (f,Gk+1) (A3)

= E(f,Gk)︸ ︷︷ ︸
E(f |Gk)

+ Ek+1
lay (f,Gk+1)︸ ︷︷ ︸
Etop(f,Lk+1)

. (A4)

Assuming thatGk is known from the previous iteration, we denote E(f,Gk) as E(f |Gk), and Ek+1
lay (f,Gk+1) as Etop(f, Lk+1)

to obtain Eq. (15).

To approximate the above E(f,Gk+1), we create a temporary graph Ĝk+1 as an approximation of Gk+1, by duplicating
the top layer of Gk as L′k = (V ′k, E

′
k) ← (Vk, Ek). We further define a labeling f̂ on this temporary graph Ĝk+1. Since f

and f̂ are defined on the different graphs (Gk+1 and Ĝk+1) or different top layers (Vk+1 and V ′k), we cannot simply assume
f = f̂ . However, V ′k representing a superpixel segmentation is the finest form of any possible Vk+1 due to the tree structure
of G. Therefore, we can always define f̂ so that f and f̂ are equivalent f ≡ f̂ , i.e., the pixelwise labeling included by both f
and f̂ are identical.

Using f̂ and Ĝk+1, our approximation function Ê(f̂ |Ĝk+1) for E(f,Gk+1) in the form of Eq. (17) is obtained by substi-
tuting Gk+1 ← Ĝk+1 and f ← f̂ into E(f,Gk+1).

Ê(f̂ |Ĝk+1) = E(f̂ , Ĝk+1) (A5)

= E(f̂ , Gk)︸ ︷︷ ︸
E(f̂ |Gk)

+ Ek+1
lay (f̂ , Ĝk+1)︸ ︷︷ ︸

A(f̂)

. (A6)

Here, becauseGk+1 and Ĝk+1 share the same structure except for the top layers, the energies E(·|Gk) involved in the bottom
hierarchy Gk are equivalent between Eqs. (A4) and (A6). To discuss how A(f̂) approximates Ek+1

top (f, Lk+1), we write it as

A(f̂) = λflo

∑
i∈V ′

k

E iflo(f̂i) + λseg

∑
i∈V ′

k

E iseg(f̂i) +
∑

(s,t)∈E′
k

wst Estreg(f̂s, f̂t) +
∑

(p,c)∈Epc′
k+1

wpc Epcreg(fp, fc) + Ek+1
gra (f̂ |V ′k). (A7)

Here, the conversion for the three terms E iflo, E iseg and Epcreg is exact, i.e., those terms in Etop and corresponding terms inA yield
the same energies as long as f ≡ f̂ . Next, we explain why these three conversions are exact and why the conversion for the
two remaining terms are approximate.

Exact Conversion of Flow and Cosegmentation Data Terms

Exactness for the unary terms E iflo and E iseg in Eqs. (3) and (5) is shown in the same way. Notice that nodes in Vk+1 are
always obtained by merging nodes of V ′k , by following the rule of Eq. (19). Therefore, we can assume the domain Ωi of each
node i ∈ Vk+1 is the union of the domains of a connected component Ci of nodes in V ′k .

Ωi =
⋃
i′∈Ci

Ωi′ (A8)

Furthermore, from f ≡ f̂ it holds that fi = f̂i′ for i ∈ Vk+1 and i′ ∈ Ci. Using these properties, a unary term E i in Etop can
be exactly converted to the form in A as follows. (Changes from previous equations are colored by blue).∑

i∈Vk+1

E i(fi) =
∑

i∈Vk+1

∑
p∈Ωi

φp(fi) (A9)

=
∑

i∈Vk+1

∑
i′∈Ci

∑
p∈Ωi′

φp(fi) (A10)

=
∑

i∈Vk+1

∑
i′∈Ci

∑
p∈Ωi′

φp(f̂i′) (A11)

=
∑
i′∈V ′

k

∑
p∈Ωi′

φp(f̂i′) (A12)

=
∑
i∈V ′

k

E i(f̂i) (A13)

Exact Conversion of Multi-layer Regularization Term

We perform a similar derivation for the multi-layer regularization term Epcreg in Eq. (10). From Figures 3 (c) and (d), we
can see that each of the parent-child edges (p, c) ∈ Epc

k+1 in the top layer of Gk+1 has a corresponding edge (p′, c) ∈ Epc′

k+1

in Ĝk+1 that has the same child c. Furthermore, for each one of those edges, Tp(p) = Tp′(p) and αp = αp′ , since f ≡ f̂ .
Therefore, we can exactly convert Epcreg in Etop to the form in A as follows.∑

(p,c)∈Epc
k+1

wpc Epcreg(fp, fc) =
∑

(p,c)∈Epc
k+1

wpc

[
λpc1 min{αp, αc}ψpc(cc) + λpc2|αp − αc|

]
(A14)

=
∑

(p,c)∈Epc
k+1

|Ωc|
[
λpc1 min{αp, αc}min{‖Tp(cc)−Tc(cc)‖2, τpc}+ λpc2|αp − αc|

]
(A15)

=
∑

(p′,c)∈Epc′
k+1

|Ωc|
[
λpc1 min{αp′ , αc}min{‖Tp′(cc)−Tc(cc)‖2, τpc}+ λpc2|αp′ − αc|

]
(A16)

=
∑

(p,c)∈Epc′
k+1

wpc Epcreg(f̂p, f̂c) (A17)

Approximate Conversion of Spatial Regularization Term

For the spatial regularization term Estreg in Eq. (6), we split it into two parts.∑
(s,t)∈E′

k

wst Estreg(f̂s, f̂t) = λst1

∑
(s,t)∈E′

k

wst min{αs, αt}
∑

p∈Bst

ψst(p)/|Bst|+ λst2

∑
(s,t)∈E′

k

wst |αs − αt|. (A18)

Here, the first and second parts evaluate flow and segmentation smoothness, respectively. We can show exact conversion
for the segmentation smoothness part. To show this, we classify the edges of E′k in Ĝk+1 into two types: Type A) edges
(s′, t′) ∈ A across two different components s′ ∈ Cs and t′ ∈ Ct. Type B) edges (s′′, t′′) ∈ B within the same component
s′′, t′′ ∈ Ci. Notice that Estreg(fs, ft) = 0 for Type A edges, because fs = ft holds in the same component. We now derive
exact conversion for the segmentation smoothness part as follows.

∑
(s,t)∈Ek+1

wst |αs − αt| =
∑

(s,t)∈Ek+1

 ∑
(s′,t′)∈Ast

ws′t′

 |αs − αt| (A19)

=
∑

(s,t)∈Ek+1

∑
(s′,t′)∈Ast

ws′t′ |αs′ − αt′ | (A20)

=
∑

(s′,t′)∈A

ws′t′ |αs′ − αt′ | (A21)

=
∑

(s′,t′)∈A

ws′t′ |αs′ − αt′ |+
∑

(s′′,t′′)∈B

ws′′t′′ |αs′′ − αt′′ | (A22)

=
∑

(s,t)∈E′
k

wst |αs − αt| (A23)

Here, wst =
∑
ws′t′ in Eq. (A19) is from Eq. (14), but the definition of (s′, t′) can be equivalently replaced as Type A edges

(s′, t′) ∈ Ast where s′ ∈ Cs and t′ ∈ Ct. Equation (A20) is from f ≡ f̂ , where it holds that αi = α′i for i ∈ Vk+1 and
i′ ∈ Ci.

In contrast, the conversion of the flow smoothness part in Eq. (A18) is not always exact. However, the pixel locations p
where the flow difference penalties ψst(p) actually occur are the same in Etop and A. Furthermore, the total costs of the flow

smoothness part are equally bounded by
∑

(s,t)∈Ek+1
λst1wstτst in both Etop andA. Thus, Eq. (A18) is a good approximation

for the spatial regularization term.

Approximate Conversion of Graph Validity Term

To derive an approximation Ek+1
gra (f̂ |V ′k) for the graph validity term Ek+1

gra (Vk+1) in Eq. (11), we need to deal with two
issues. 1) We need to convert variables from the node structure Vk+1 in Etop to the labeling f̂ on V ′k inA. 2) The approximation
function must be pairwise submodular energies for allowing graph cut based optimization.

For the first issue, we apply the variable conversion of Eq. (19) and regard Vk+1 as a function Vk+1(f̂) that represents a
set of connected components Ci of nodes in V ′k assigned the same label. Thus, Ek+1

gra (Vk+1) is converted to a function of f̂ as
follows.

Ek+1
gra (Vk+1) = λnodβ

k+1|Vk+1| − λcol

∑
i∈Vk+1

∑
p∈Ωi

lnP (Ip|θi) (A24)

= λnodβ
k+1|Vk+1(f̂)| − λcol

∑
i∈Vk+1

∑
p∈Ωi

lnP (Ip|θCi) (A25)

= λnodβ
k+1|Vk+1(f̂)| − λcol

∑
i′∈V ′

k

∑
p∈Ωi′

lnP (Ip|θCi) (A26)

Here, |Vk+1(f̂)| is the count of the components defined by the labeling f̂ , and θCi is the color distribution within the region
of a component Ci that i′ ∈ V ′k belongs to. The fact that the computation of both |Vk+1(f̂)| and θCi involves regional
(higher-order) information of f̂ raises the second issue.

To deal with the second issue of higher-order terms, we relax the connectivity of |Vk+1(f̂)| and treat it as the count of
unique labels f̂i in i ∈ V ′k without considering their spatial connections.

|Vk+1(f̂)| '
∑

L∈{all labels}

δL(f̂), (A27)

where δL(f̂) = 1 if ∃i ∈ V ′k : f̂i = L; otherwise δL(f̂) = 0. In this manner, |Vk+1(f̂)| becomes label costs [2] of f̂ ,
and the formulation of Eq. (A26) is the same as that of multi-region segmentation of [2]. In their model fitting approach, the
label costs are optimized as pairwise submodular terms under alpha expansion moves with additional auxiliary variables. Our
optimization approach using local expansion moves allows the same strategy. Furthermore, the distribution θCi is treated as
a label θi given by f̂i, rather than a value computed from Ci. Thus, the likelihood terms in Eq. (A26) are approximated as
unary potentials as follows.

−
∑
i′∈V ′

k

∑
p∈Ωi′

lnP (Ip|θCi) '
∑
i∈V ′

k

E igra(f̂i) (A28)

where E igra(f̂i) evaluates the given distribution label θi included in f̂i as

E igra(f̂i) = −
∑
p∈Ωi

lnP (Ip|θi). (A29)

Note that the energy conversion is unnecessary for the graph terms in E(f̂ |Gk), because those terms are constant with the
fixed Gk. Likewise, it is unnecessary in the whole process of the top-down labeling refinement phase.

Consequently, f̂ becomes the following labeling on Ĝk+1.

f̂i =

{
(Ti, αi,θi) if i ∈ V ′k
(Ti, αi) if i ∈ Vl (0 ≤ l ≤ k)

. (A30)

The distribution label θi of i ∈ V ′k is initialized as the color distribution of the region Ωi. Except for the cross-view proposer,
the proposal generation for distribution labels is essentially the same as that of other labels (T, α). The expansion and
perturbation proposers simply copy the current label θi of the target node i as a candidate. The average proposer generates
candidates as the weighted sum of two distributions wiθi + wjθj . The cross-view proposer generates a candidate as the
distribution within the region Ωi of the target node i.

C. Initiailzation of Color Models

Here, we explain the implementation details of the initialization of color models {θF ,θB} omitted in Section 5.3.

Geodesic Distance

We first compute a geodesic distance map for each of the input images. At every pixel p we compute the shortest geodesic
distance to any of the image boundary pixels q ∈ B:

D(p) = min
q∈B

d(p,q), (A31)

where d(p,q) is the geodesic distance between two pixels p and q define as

d(p,q) = min
s∈P

|s|−1∑
k=1

‖I(s(k + 1))− I(s(k))‖2. (A32)

Here, P is the set of all paths joining p and q. The approximate computation of D(p) is efficiently implemented using a
linear-order algorithm of [11].

We further normalize the value range of the geodesic distance map by

D̄(p) = e−D(p)2/γ . (A33)

The parameter γ is given as γ = ησ2 where σ = E[‖I(p)− I(q)‖2] is computed as the expectation over all spatial neighbors
(p,q), and η is set to 20 in our implementation. The values of 1− D̄(p) are visualized in the right part of Figure 4.

Seeds and Initial Mask Creation for GrabCut

Secondly, we compute seeds and initial masks of foreground and background as input to GrabCut [8]. The seeds of fore-
ground and background regions give constant unary likelihoods. The initial masks are used to initialize the color distributions
used in GrabCut. We compute these regions using the ratio values and the geodesic distance as follows.

As explained in Section 5.3, we have three ratio values {r1, r2, r3} at each pixel computed from the three levels of the
image pyramid. For each level, we normalize the ratio values to be in the range of [0, 1] using the minimum and maximum
ratio values. After the layerwise normalization, we integrate the three ratio values to obtain a single value as r = r1r2r3 +

(1− r1)r2r3 + r1(1− r2)r3 + r1r2(1− r3). We then create the foreground / background seeds and foreground / background
masks as regions where r < 0.05, r > 0.95, r < 0.70 and r > 0.85, respectively. The regions of foreground seed and mask
are further reduced if the geodesic distance is D̄(p) > 0.5.

In our implementation, the color likelihood terms of GrabCut are implemented by 643 bins of RGB color histograms
with a weight coefficient of 1. The pixels in the foreground/background seeds are assigned a constant likelihood value of
10. Using the geodesic distance in Eq. (A33), we also add background likelihood values of 10D̄(p). For efficiency, we use
the superpixel nodes of V1 during this step and reuse them again in our main algorithm. Finally, we obtain estimated color
models {θF ,θB} of an image after a few iterations of GrabCut. We perform this computation for each of the two images.

D. Submodularity

As discussed in [10, 9] the submodularity condition of local expansion move energies in Eq. (20) is the same as that of
conventional alpha expansion moves [1]. To prove that our energy is submodular under expansion moves, we need to show
that our pairwise regularization terms Espreg and Epcreg in Eqs. (6) and (10) are submodular. To simplify discussions, we rewrite
these terms as a pairwise function, as follows.

φ(x,y) = min{x, y}ψ(x,y) + λ|x− y|. (A34)

Here, λ ≥ 0 is a scalar weight, a bold x denotes a label vector of (T, α) while a non-bold x denotes its scalar alpha label
α ∈ [0, 1]. The two terms Espreg and Epcreg can be expressed in this form by properly defining ψ(x,y). Using this notation we
prove the following two lemmas.

Lemma 1 If ψ(,) satisfies the following three conditions for any x,y, z

0 ≤ ψ(x,y) ≤ τ, (A35)

ψ(x,x) = 0, (A36)

ψ(x,y) + ψ(z, z) ≤ ψ(x, z) + ψ(z,y), (A37)

and if
τ ≤ 2λ, (A38)

then φ(x,y) is submodular under expansion moves, i.e., it satisfies the following submodularity condition of expansion
moves [1, 6]:

φ(x,y) + φ(z, z) ≤ φ(x, z) + φ(z,y). (A39)

Proof.
Notice that φ(z, z) = 0. Using this and assuming x ≥ y without loss of generality, Eq. (A39) can be expressed as

min{x, z}ψ(x, z) + λ|x− z|+ min{z, y}ψ(z,y) + λ|z − y| − yψ(x,y)− λ(x− y) ≥ 0. (A40)

The proof for the above inequity is divided into the following three cases depending on z.

Case 1 where x ≥ y ≥ z ≥ 0. We show in this case that

Eq. (A40, left) = zψ(x, z) + λ(x− z) + zψ(z,y) + λ(y − z)− yψ(x,y)− λ(x− y) (A41)

= z
[
ψ(x, z) + ψ(z,y)

]
− yψ(x,y) + 2λ(y − z) (A42)

≥ zψ(x,y)− yψ(x,y) + 2λ(y − z) (A43)

= (y − z)
[
2λ− ψ(x,y)

]
(A44)

≥ (y − z)
[
2λ− τ

]
(A45)

≥ 0. (A46)

Case 2 where x ≥ z ≥ y ≥ 0. Similarly, we show that

Eq. (A40, left) = zψ(x, z) + λ(x− z) + yψ(z,y) + λ(z − y)− yψ(x,y)− λ(x− y) (A47)

= zψ(x, z) + yψ(z,y)− yψ(x,y) (A48)

≥ y
[
ψ(x, z) + ψ(z,y)− ψ(x,y)

]
(A49)

≥ 0. (A50)

Case 3 where z ≥ x ≥ y ≥ 0. Finally, we show that

Eq. (A40, left) = xψ(x, z) + λ(z − x) + yψ(z,y) + λ(z − y)− yψ(x,y)− λ(x− y) (A51)

= xψ(x, z) + yψ(z,y)− yψ(x,y) + 2λ(z − x) (A52)

≥ y
[
ψ(x, z) + ψ(z,y)− ψ(x,y)

]
+ 2λ(z − x) (A53)

≥ 0. (A54)

Lemma 2 If ψ(x,y) is given by a form of the truncated Euclidean distance as

ψ(x,y) = min{‖x− y‖2, τ}, (A55)

then ψ(x,y) satisfies the aforementioned three conditions of Eqs. (A35) – (A37).

Proof.
The first and second conditions are obvious. We can also show the third condition as follows.

ψ(x,y) + ψ(z, z) = ψ(x,y) (A56)

= min{‖x− y‖2, τ} (A57)

= min{‖(x− z)− (y − z)‖2, τ} (A58)

≤ min{‖x− z‖2 + ‖y − z‖2, τ} (A59)

≤ min{‖x− z‖2, τ}+ min{‖y − z‖2, τ} (A60)

= ψ(x, z) + ψ(z,y) (A61)

The above two lemmas directly derive the submodularity for the parent-children term Epcreg using substitutions λ = λpc2

and τ = λpc1τpc. By slightly modifying Eq. (A55) for the spatial term Estreg, it can also be shown to be submodular where
λ = λst2 and τ = λst1τst.

E. Tuning Hyper Parameters

We explain our strategy of tuning parameters. Since the graph term is independent of the labeling, we start with a simple
energy function consisting of only the graph term. We set λcol = 1 and tune λnod so that |V1| ' 2|V2| in the obtained graph.
We then use the single layer model and tune parameters of the flow (λflo, τD) and segmentation (λseg) data terms and spatial
smoothness term (λst1, λst2, τst). While checking segmentation quality, we tune λseg at around λcol and λst2 at around 50 (the
default setting in GrabCut [8]). The remaining flow-related parameters are tuned by checking flow quality. We finally use the
hierarchical model and tune the parameters (λpc1, λpc2, τpc) of the multi-layer regularization.

Table A1. Benchmark results (without flipped images). FAcc is flow
accuracy rate for an error threshold of 5 pixels in a normalized scale.
SAcc is segmentation accuracy by intersection-over-union ratios. SAcc
scores (?) of optic flow mothods are computed by post-processing using
left right consistency check.

Optic flow / FG3DCar JODS PASCAL
cosegment. Methods FAcc SAcc FAcc SAcc FAcc SAcc

Ours 0.837 0.756 0.665 0.521 0.754 0.659
Our single layer ([10]) 0.734 0.757 0.525 0.515 0.649 0.626
SIFT Flow [7] 0.640 (0.420) 0.582 (0.257) 0.695 (0.468)
DSP [5] 0.492 (0.285) 0.517 (0.227) 0.590 (0.364)
DFF [12] 0.498 (0.328) 0.330 (0.213) 0.333 (0.251)

Faktor and Irani [3] – 0.688 – 0.549 – 0.486
Joulin et al. [4] – 0.461 – 0.332 – 0.411

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 5 10 15
Error threshold [pixels]

FG3DCar

Ours
Single layer
SIFT Flow
DSP
DFF

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 5 10 15
Error threshold [pixels]

JODS

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 5 10 15
Error threshold [pixels]

PASCAL

Figure A5. Average flow accuracies evaluated by endpoint er-
rors with varying thresholds (without flipped images). Ours
always shows best scores. Similarly to Figure 5, our method
shows always best scores.

F. Dataset

In this section, we show more examples and report some statistics of our dataset. Our dataset comprises of 400 image
pairs divided into three groups – FG3DCar contains 195 image pairs of vehicles. JODS contains 81 image pairs of airplanes,
horses, and cars. PASCAL contains 124 image pairs of bicycles, motorbikes, buses, cars, trains. The charts in Figure A1
show the number of image pairs in each subcategory of JODS and PASCAL. Figures A2–A4 show examples of image pairs
from FG3DCar, JODS and PASCAL, respectively. Notice that JODS and PASCAL contain some horizontally flipped image
pairs, i.e., one image requires a mirror reflection prior to alignment. The numbers of such flipped image pairs included in
each group are follows. FG3DCar: 2 pairs (1 %). JODS: 9 pairs (11 %). PASCAL: 48 pairs (39 %).

G. Benchmark Scores without Flipped Images

As mentioned in the previous section, our dataset contains flipped image pairs. Since our method and others do not
explicitly handle such image pairs, they fail to find correspondence for them. Therefore, we also evaluate accuracy scores
similar to Table 1 and Figure 5 but excluding flipped image pairs from the evaluation. We show the average scores for the
three groups in Table A1, and the plots of average flow accuracies with varying thresholds in Figure A5. We observe similar
trends between scores with and without flipped image pairs.

References

[1] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell.
(TPAMI), 23(11):1222–1239, 2001.

[2] A. Delong, A. Osokin, H. N. Isack, and Y. Boykov. Fast approximate energy minimization with label costs. Int’l Journal of Computer
Vision, 96(1):1–27, 2012.

[3] A. Faktor and M. Irani. Co-segmentation by composition. In Proc. of Int’l Conf. on Computer Vision (ICCV), pages 1297–1304,
2013.

[4] A. Joulin, F. Bach, and J. Ponce. Discriminative clustering for image co-segmentation. In Proc. of IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), 2010.

[5] J. Kim, C. Liu, F. Sha, and K. Grauman. Deformable spatial pyramid matching for fast dense correspondences. In Proc. of IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), pages 2307–2314, 2013.

[6] V. Kolmogorov and R. Zabin. What energy functions can be minimized via graph cuts? IEEE Trans. Pattern Anal. Mach. Intell.
(TPAMI), 26(2):147–159, 2004.

[7] C. Liu, J. Yuen, and A. Torralba. SIFT Flow: Dense Correspondence across Scenes and Its Applications. IEEE Trans. Pattern Anal.
Mach. Intell. (TPAMI), 33(5):978–994, 2011.

[8] C. Rother, V. Kolmogorov, and A. Blake. “grabcut”: Interactive foreground extraction using iterated graph cuts. ACM Trans. on
Graph., 23(3):309–314, 2004.

53
17

11

JODS

Plane Horse Car

57

39

11
10 7

PASCAL

Bus Bicycle Motorbike Train Car

Figure A1. Subcategories of JODS and PASCAL.

Figure A2. Examples of FG3DCar Figure A3. Examples of JODS Figure A4. Examples of PASCAL

[9] T. Taniai, Y. Matsushita, and T. Naemura. Graph cut based continuous stereo matching using locally shared labels. In Proc. of IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), pages 1613–1620, 2014.

[10] T. Taniai, Y. Matsushita, Y. Sato, and T. Naemura. Continuous Stereo Matching Using Local Expansion Moves. arXiv:1603.08328,
http://arxiv.org/abs/1603.08328, 2016.

[11] P. J. Toivanen. New Geodesic Distance Transforms for Gray-scale Images. Pattern Recogn. Lett., 17(5):437–450, 1996.
[12] H. Yang, W. Lin, and J. Lu. DAISY filter flow: A generalized discrete approach to dense correspondences. In Proc. of IEEE Conf.

on Computer Vision and Pattern Recognition (CVPR), pages 3406–3413, 2014.

http://arxiv.org/abs/1603.08328

