Multi-staged pipeline framework

We estimate disparity D, camera motion P, moving-object mask S, and moving-object flow f_{non} (non-rigid flow) by implicitly minimizing image residual

$$ E(D, P, S, f_{non}) = \sum \| (p) - D_{\text{des}}(w(p; D, P, S, f_{non})) \| $$

using bimodal warping $w(p; D, P, S, f_{non}) = \begin{cases} p + f_{non}(p) & \text{if } \sigma(p) = \text{foreground} \\ p + f_{rig}(D, P) & \text{if } \sigma(p) = \text{background} \end{cases}$

- **Input**
 - Binocular stereo
 - Visual odometry
 - Epipolar stereo

- **Output**
 - Fully rigid warping $w(p; D, P)$
 - Partly non-rigid warping $w(p; D, P, S, f_{non})$

Binocular stereo uses SGM to get an initial disparity map.

Visual odometry estimates camera motion by minimizing

$$ \min \sum w_r \| D_{\text{des}}(w_r(p; D, P)) \| $$

We downweight moving object regions by w_r predicted by previous (S, f_{non}).

Epipolar stereo refines disparity using temporarily adjacent frames. We blend left-right matching costs with matching costs for four adjacent frames.

Initial segmentation finds moving object regions. We use GrabCut with image residual as soft seeds for moving foreground.

Image residual

Optical flow estimates 2D flow map for only the predicted moving object regions. We use the SGM algorithm.

Flow fusion combines rigid and non-rigid flow proposals by a fusion move.

Experiments

KITTI 2015 stereo scene flow benchmark (in November 2016)

- **Improvements by epipolar stereo**
- **Evaluation on Sintel dataset**

Comparison with state-of-the-art methods (PRSM, OSF) on Sintel dataset

- Our method is better
- Our method is worse

Fast Multi-frame Stereo Scene Flow with Motion Segmentation

Tatsunori Tanai (RIKEN AIP/Univ. of Tokyo) Sudipta N. Sinha (Microsoft Research) Yoichi Sato (Univ. of Tokyo)

Contributions

Unified framework where multiple tasks benefit from each other

- **Optical flow**: 2D flow motion for rigid background (rigid flow) is recovered parametrically using known depth and camera motion, reducing computational burden of general (non-rigid) optical flow.

- **Stereo**: Given camera motion, disparity at left-right occluded regions is improved via multi-view stereo on consecutive frames.

- **Motion segmentation**: The segmentation mask is a byproduct of our flow estimation that fuses non-rigid and rigid flow maps.

- **Visual odometry**: Camera motion estimates are recovered more robustly by utilizing the moving object mask information.

In contrast to existing joint methods

- We decompose the task into several simple optimization problems, rather than directly optimizing a single complex function.